pref_int_rvea.response = pd.DataFrame(
                    [response], columns=pref_int_rvea.content["dimensions_data"].columns
                )
                pref_int_nsga.response = pd.DataFrame(
                    [response], columns=pref_int_nsga.content["dimensions_data"].columns
                )
                pref_nimb_rvea.response = pd.DataFrame(
                    [response],
                    columns=pref_nimb_rvea.content["dimensions_data"].columns,
                )
                pref_nimb_nsga.response = pd.DataFrame(
                    [response],
                    columns=pref_nimb_nsga.content["dimensions_data"].columns,
                )

                a_post_rvea.iterate()
                a_post_nsga.iterate()
                _, pref_int_rvea = int_rvea.iterate(pref_int_rvea)
                _, pref_int_nsga = int_nsga.iterate(pref_int_nsga)
                _, pref_nimb_rvea = nimb_rvea.iterate(pref_nimb_rvea)
                _, pref_nimb_nsga = nimb_nsga.iterate(pref_nimb_nsga)

                scalar_rvea = scalar(a_post_rvea.population.objectives, response)
                scalar_nsga = scalar(a_post_nsga.population.objectives, response)
                scalar_irvea = scalar(int_rvea.population.objectives, response)
                scalar_insga = scalar(int_nsga.population.objectives, response)
                scalar_nrvea = scalar(nimb_rvea.population.objectives, response)
                scalar_nnsga = scalar(nimb_nsga.population.objectives, response)

                norm_rvea = np.linalg.norm(a_post_rvea.population.objectives, axis=1)
                norm_nsga = np.linalg.norm(a_post_nsga.population.objectives, axis=1)
Exemple #2
0
    data = pd.DataFrame(np.hstack((x, y.objectives)),
                        columns=x_names + y_names)

    problem = DataProblem(data=data,
                          variable_names=x_names,
                          objective_names=y_names)

    problem.train(LipschitzianRegressor)
    evolver_L_opt = oRVEA(problem, use_surrogates=True)
    while evolver_L_opt.continue_evolution():
        evolver_L_opt.iterate()

    evolver_L = RVEA(problem, use_surrogates=True)
    while evolver_L.continue_evolution():
        evolver_L.iterate()

    evolver_L_robust = robust_RVEA(problem, use_surrogates=True)
    while evolver_L_robust.continue_evolution():
        evolver_L_robust.iterate()

    problem.train(GaussianProcessRegressor)
    evolver_G_opt = oRVEA(problem, use_surrogates=True)
    while evolver_G_opt.continue_evolution():
        evolver_G_opt.iterate()

    evolver_G = RVEA(problem, use_surrogates=True)
    while evolver_G.continue_evolution():
        evolver_G.iterate()

    evolver_G_robust = robust_RVEA(problem, use_surrogates=True)
Exemple #3
0
                               n_gen_per_iter=gen)

            # initial reference point is specified randomly
            response = np.random.rand(n_obj)

            # run algorithms once with the randomly generated reference point
            _, pref_int_rvea = int_rvea.requests()
            _, pref_int_nsga = int_nsga.requests()
            pref_int_rvea.response = pd.DataFrame(
                [response],
                columns=pref_int_rvea.content["dimensions_data"].columns)
            pref_int_nsga.response = pd.DataFrame(
                [response],
                columns=pref_int_nsga.content["dimensions_data"].columns)

            _, pref_int_rvea = int_rvea.iterate(pref_int_rvea)
            _, pref_int_nsga = int_nsga.iterate(pref_int_nsga)

            # build initial composite front
            cf = generate_composite_front(int_rvea.population.objectives,
                                          int_nsga.population.objectives)

            # the following two lines for getting pareto front by using pymoo framework
            problemR = get_problem(problem_name.lower(), n_var, n_obj)
            ref_dirs = get_reference_directions("das-dennis",
                                                n_obj,
                                                n_partitions=12)
            pareto_front = problemR.pareto_front(ref_dirs)

            # creates uniformly distributed reference vectors
            reference_vectors = ReferenceVectors(lattice_resolution, n_obj)
Exemple #4
0
f3 = _ScalarObjective(name="f3", evaluator=f_3, maximize=[True])
f4 = _ScalarObjective(name="f4", evaluator=f_4)
f5 = _ScalarObjective(name="f5", evaluator=f_5)

varsl = variable_builder(
    ["x_1", "x_2"],
    initial_values=[0.5, 0.5],
    lower_bounds=[0.3, 0.3],
    upper_bounds=[1.0, 1.0],
)

problem = MOProblem(variables=varsl, objectives=[f1, f2, f3, f4, f5])

evolver = RVEA(problem, interact=True, n_iterations=10, n_gen_per_iter=100)

_, pref = evolver.iterate()
n_iteration = 1

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("10.0.2.15", 5005))
# sock.bind(("127.0.0.1", 5005))
sock.listen(1)

print("Waiting for ComVis to connect...")
connection, client_addr = sock.accept()

print("Connection estabilished!")

while True:
    try:
        data = connection.recv(2048)
from desdeo_problem.testproblems.TestProblems import test_problem_builder
from desdeo_emo.EAs.RVEA import RVEA
from desdeo_emo.EAs.NSGAIII import NSGAIII
from desdeo_emo.othertools.plotlyanimate import animate_init_, animate_next_


dtlz3 = test_problem_builder("DTLZ3", n_of_variables=12, n_of_objectives=11)
evolver = RVEA(dtlz3, n_iterations=10)
figure = animate_init_(evolver.population.objectives, filename="dtlz3.html")
while evolver.continue_evolution():
    evolver.iterate()
    figure = animate_next_(
        evolver.population.objectives,
        figure,
        filename="dtlz3.html",
        generation=evolver._iteration_counter,
    )