Exemple #1
0
def split_data(data_dir, idx_path, output_dir):
    '''
    split dataset according to the index file.
    inputs:
        data_dir(str): the dataset dir
        idx_path(str): the idx_path
        output_dir(str): the output dir
    outputs:
        num_data(int): the # of samples should be in the output_dir
    '''
    # get idx_file
    idx_list = get_idx_list(idx_path)
    os.mkdir(output_dir)
    os.mkdir(os.path.join(output_dir, 'calib'))
    os.mkdir(os.path.join(output_dir, 'image_2'))
    os.mkdir(os.path.join(output_dir, 'label_2'))
    os.mkdir(os.path.join(output_dir, 'velodyne'))
    # symlink data
    for idx in idx_list:
        os.symlink(os.path.join(data_dir, 'calib', idx + '.txt'),
                   os.path.join(output_dir, 'calib', idx + '.txt'))
        os.symlink(os.path.join(data_dir, 'image_2', idx + '.png'),
                   os.path.join(output_dir, 'image_2', idx + '.png'))
        os.symlink(os.path.join(data_dir, 'label_2', idx + '.txt'),
                   os.path.join(output_dir, 'label_2', idx + '.txt'))
        os.symlink(os.path.join(data_dir, 'velodyne', idx + '.bin'),
                   os.path.join(output_dir, 'velodyne', idx + '.bin'))
    return len(idx_list)
Exemple #2
0
def main():
    '''
    visualize data
    '''
    parser = argparse.ArgumentParser(description='Visulize Dataset')
    parser.add_argument('--data-dir',
                        type=str,
                        metavar='INPUT PATH',
                        help='dataset dir')
    parser.add_argument(
        '--idx-file',
        type=str,
        metavar='INDEX FILE PATH',
        help='the txt file containing the indeces of the smapled data')
    parser.add_argument('--output-dir',
                        type=str,
                        metavar='OUTPUT PATH',
                        help='output dir')
    parser.add_argument('--dataset',
                        type=str,
                        metavar='DATASET',
                        help='KITTI' or 'CARLA')
    args = parser.parse_args()
    global dataset, data_dir, output_dir
    data_dir = args.data_dir
    idx_path = args.idx_file
    output_dir = args.output_dir
    dataset = args.dataset.upper()
    idx_list = get_idx_list(idx_path)
    with Pool(8) as p:
        r = list(tqdm(p.imap(vis_fn, idx_list), total=len(idx_list)))
Exemple #3
0
def create_info_file(root_dir:str, idx_path:str, save_path:str):
    '''
    Create KITTI_infos_xxx.pkl
    [<info>,]
    info: {
        tag: str (e.g. '000000'),
        pc_path: str,
        reduced_pc_path: str,
        img_path: str,
        calib: KittiCalib,
        label: KittiLable,
    }
    '''
    global g_data_dir, g_infos
    # load idx
    root_dir = Path(root_dir)
    (root_dir/"reduced_velodyne").mkdir(exist_ok=True)
    idx_list = get_idx_list(idx_path)
    idx_list.sort()
    infos = Manager().list()
    g_data_dir = root_dir
    g_infos = infos
    with Pool(8) as p:
        r = list(tqdm(p.imap(create_info_file_wk_fn, idx_list), total=len(idx_list)))
    infos = list(infos)
    save_pickle(infos, save_path)
    print(f"Created {save_path}: {len(infos)} samples")
def create_info_file(root_dir: str, idx_path: str, save_path: str,
                     dataset: str):
    '''
    Create <dataset>_infos_xxx.pkl
    [<info>,]
    info: {
        tag: str (e.g. '000000'),
        pc_paths: {
            velo_top: abs_path,
            ...
        }
        img_path: str,
        calib: CarlaCalib/WaymoCalib/KittiCalib,
        label: CarlaLabel/WaymoLabel/KittiLabel,
    }
    '''
    global g_data_dir, g_infos
    root_dir = Path(root_dir)
    if dataset == "kitti":
        (root_dir / "reduced_velodyne").mkdir(exist_ok=True)
    idx_list = get_idx_list(idx_path)
    idx_list.sort()
    infos = Manager().list()
    g_data_dir = root_dir
    g_infos = infos
    with Pool(8) as p:
        if dataset == "carla":
            r = list(
                tqdm(p.imap(create_info_file_carla_wk_fn, idx_list),
                     total=len(idx_list)))
        elif dataset == "waymo":
            r = list(
                tqdm(p.imap(create_info_file_waymo_wk_fn, idx_list),
                     total=len(idx_list)))
        elif dataset == "kitti":
            r = list(
                tqdm(p.imap(create_info_file_kitti_wk_fn, idx_list),
                     total=len(idx_list)))
    infos = list(infos)
    save_pickle(infos, save_path)
    print(f"Created {save_path}: {len(infos)} samples")
Exemple #5
0
def split_data(data_dir, idx_path, output_dir):
    '''
    split dataset according to the index file.
    inputs:
        data_dir(str): the dataset dir
        idx_path(str): the idx_path
        output_dir(str): the output dir
    outputs:
        num_data(int): the # of samples should be in the output_dir
    '''
    # get idx_file
    idx_list = get_idx_list(idx_path)
    os.mkdir(output_dir)
    os.mkdir(os.path.join(output_dir, 'calib'))
    # os.mkdir(os.path.join(output_dir, 'image_2'))
    os.mkdir(os.path.join(output_dir, 'label_imu'))
    os.mkdir(os.path.join(output_dir, 'velo_top'))
    os.mkdir(os.path.join(output_dir, 'velo_left'))
    os.mkdir(os.path.join(output_dir, 'velo_right'))

    # symlink data
    idx_count = 0
    for idx in idx_list:
        if not os.path.isfile(os.path.join(data_dir, 'calib', idx + '.txt')):
            return idx_count

        idx_count = idx_count + 1
        os.symlink(os.path.join(data_dir, 'calib', idx + '.txt'),
                   os.path.join(output_dir, 'calib', idx + '.txt'))
        # os.symlink(os.path.join(data_dir, 'image_2', idx+'.png'), os.path.join(output_dir, 'image_2', idx+'.png'))
        os.symlink(os.path.join(data_dir, 'label_imu', idx + '.txt'),
                   os.path.join(output_dir, 'label_imu', idx + '.txt'))
        os.symlink(os.path.join(data_dir, 'velo_top', idx + '.npy'),
                   os.path.join(output_dir, 'velo_top', idx + '.npy'))
        os.symlink(os.path.join(data_dir, 'velo_left', idx + '.npy'),
                   os.path.join(output_dir, 'velo_left', idx + '.npy'))
        os.symlink(os.path.join(data_dir, 'velo_right', idx + '.npy'),
                   os.path.join(output_dir, 'velo_right', idx + '.npy'))
    return len(idx_list)
Exemple #6
0
def create_db_file(root_dir:str, idx_path:str, save_dir:str):
    '''
    Create KITTI_dbinfos_xxx.pkl and save gt_pc into gt_database/
    dbinfo: {
        "Car": [<car_dbinfo>, ],
        "Pedestrian": [<ped_dbinfo>, ], 
        ...
    }
    car_dbinfo:{
        name: str,
        gtpc_path: str,
        tag: str,
        gt_idx: int, # no. of obj
        box3d_cam: KittiObj,
        num_points_in_gt: int,
        calib: KittiCalib
    }
    '''
    global g_data_dir, g_dbinfos
    root_dir = Path(root_dir)
    save_dir = Path(save_dir)
    (save_dir/"gt_database").mkdir(exist_ok=True)
    idx_list = get_idx_list(idx_path)
    idx_list.sort()
    # get classes
    cls_list = get_classes(root_dir/"label_2", idx_list)
    dbinfo = {itm: [] for itm in cls_list}
    g_data_dir = root_dir
    g_dbinfos = Manager().list()

    with Pool(8) as p:
        r = list(tqdm(p.imap(create_db_file_wk_fn, idx_list), total=len(idx_list)))
    for info in g_dbinfos:
        dbinfo[info["name"]].append(info)
    save_pickle(dbinfo, str(save_dir/"KITTI_dbinfos_train.pkl"))
    print("KITTI_dbinfos_train.pkl saved.")
    for k, v in dbinfo.items():
        print(f"{k}: {len(v)}")
def create_db_file(root_dir: str, idx_path: str, save_dir: str, dataset: str):
    '''
    Create <dataset>_dbinfos_xxx.pkl and save gt_pc into gt_database/
    dbinfo: {
        "Car": [<car_dbinfo>, ],
        "Pedestrian": [<ped_dbinfo>, ],
        ...
    }
    car_dbinfo:{
        name: str,
        gtpc_paths: {
            velo_top: abs_path of saved gtpc (IMU Frame),
            ...
        }
        tag: str,
        gt_idx: int, # no. of obj
        box3d_imu: CarlaObj, WaymoObj, KittiObj
        num_points_in_gt: int,
        calib: CarlaCalib, WaymoCalib, KittiCalib
    }
    '''
    global g_data_dir, g_dbinfos
    root_dir = Path(root_dir)
    save_dir = Path(save_dir)
    (save_dir / "gt_database").mkdir(exist_ok=False)
    idx_list = get_idx_list(idx_path)
    idx_list.sort()
    # get classes
    if dataset in ["carla", "waymo"]:
        cls_list = get_classes(root_dir / "label_imu",
                               idx_list,
                               dataset=dataset)
    elif dataset == "kitti":
        cls_list = get_classes(root_dir / "label_2", idx_list, dataset=dataset)
    dbinfo = {itm: [] for itm in cls_list}
    g_data_dir = root_dir
    g_dbinfos = Manager().list()

    if dataset == "carla":
        with Pool(8) as p:
            r = list(
                tqdm(p.imap(create_db_file_carla_wk_fn, idx_list),
                     total=len(idx_list)))
        for info in g_dbinfos:
            dbinfo[info["name"]].append(info)
        save_pickle(dbinfo, str(save_dir / "CARLA_dbinfos_train.pkl"))
        print("CARLA_dbinfos_train.pkl saved.")
    elif dataset == "waymo":
        with Pool(8) as p:
            r = list(
                tqdm(p.imap(create_db_file_waymo_wk_fn, idx_list),
                     total=len(idx_list)))
        for info in g_dbinfos:
            dbinfo[info["name"]].append(info)
        save_pickle(dbinfo, str(save_dir / "WAYMO_dbinfos_train.pkl"))
        print("WAYMO_dbinfos_train.pkl saved.")
    elif dataset == "kitti":
        with Pool(8) as p:
            r = list(
                tqdm(p.imap(create_db_file_kitti_wk_fn, idx_list),
                     total=len(idx_list)))
        for info in g_dbinfos:
            dbinfo[info["name"]].append(info)
        save_pickle(dbinfo, str(save_dir / "KITTI_dbinfos_train.pkl"))
        print("KITTI_dbinfos_train.pkl saved.")
    else:
        raise NotImplementedError
    for k, v in dbinfo.items():
        print(f"{k}: {len(v)}")