def aug_test(self, imgs, img_metas, rescale=False): # recompute feats to save memory feats = self.extract_feats(imgs) aug_bboxes = [] aug_scores = [] for x, img_meta in zip(feats, img_metas): # only one image in the batch outs = self.bbox_head(x) bbox_inputs = outs + (img_meta, self.test_cfg, False, False) det_bboxes, det_scores = self.bbox_head.get_bboxes(*bbox_inputs)[0] aug_bboxes.append(det_bboxes) aug_scores.append(det_scores) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = self.merge_aug_results( aug_bboxes, aug_scores, img_metas) det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, self.test_cfg.score_thr, self.test_cfg.nms, self.test_cfg.max_per_img) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor'] bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) return bbox_results
def simple_test(self, img, img_meta, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) if proposals is None: proposal_list = self.simple_test_rpn(x, img_meta, self.test_cfg.rpn) else: proposal_list = proposals det_bboxes, det_labels = self.simple_test_bboxes(x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale) bbox_results = bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) if not self.with_mask: return bbox_results else: segm_results = self.simple_test_mask(x, img_meta, det_bboxes, det_labels, rescale=rescale) return bbox_results, segm_results
def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ # recompute feats to save memory proposal_list = self.aug_test_rpn(self.extract_feats(imgs), img_metas, self.test_cfg.rpn) det_bboxes, det_labels = self.aug_test_bboxes(self.extract_feats(imgs), img_metas, proposal_list, self.test_cfg.rcnn) if rescale: _det_bboxes = det_bboxes else: _det_bboxes = det_bboxes.clone() _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor'] bbox_results = bbox2result(_det_bboxes, det_labels, self.bbox_head.num_classes) # det_bboxes always keep the original scale if self.with_mask: segm_results = self.aug_test_mask(self.extract_feats(imgs), img_metas, det_bboxes, det_labels) return bbox_results, segm_results else: return bbox_results
def simple_test(self, img, img_meta, proposals=None, rescale=False): """Test without augmentation.""" assert self.with_bbox, 'Bbox head must be implemented.' x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals det_bboxes, det_labels = self.simple_test_bboxes(x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=False) # pack rois into bboxes grid_rois = bbox2roi([det_bboxes[:, :4]]) grid_feats = self.grid_roi_extractor( x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) if grid_rois.shape[0] != 0: self.grid_head.test_mode = True grid_pred = self.grid_head(grid_feats) det_bboxes = self.grid_head.get_bboxes(det_bboxes, grid_pred['fused'], img_meta) if rescale: det_bboxes[:, :4] /= img_meta[0]['scale_factor'] else: det_bboxes = torch.Tensor([]) bbox_results = bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) return bbox_results
def simple_test(self, img, img_meta, rescale=False): x = self.extract_feat(img) outs = self.bbox_head(x) bbox_inputs = outs + (img_meta, self.test_cfg, rescale) bbox_list = self.bbox_head.get_bboxes(*bbox_inputs) bbox_results = [ bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes) for det_bboxes, det_labels in bbox_list ] return bbox_results[0]
def aug_test(self, imgs, img_metas, proposals=None, rescale=False): """Test with augmentations. If rescale is False, then returned bboxes and masks will fit the scale of imgs[0]. """ if self.with_semantic: semantic_feats = [ self.semantic_head(feat)[1] for feat in self.extract_feats(imgs) ] else: semantic_feats = [None] * len(img_metas) # recompute feats to save memory proposal_list = self.aug_test_rpn(self.extract_feats(imgs), img_metas, self.test_cfg.rpn) rcnn_test_cfg = self.test_cfg.rcnn aug_bboxes = [] aug_scores = [] for x, img_meta, semantic in zip(self.extract_feats(imgs), img_metas, semantic_feats): # only one image in the batch img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, scale_factor, flip) # "ms" in variable names means multi-stage ms_scores = [] rois = bbox2roi([proposals]) for i in range(self.num_stages): bbox_head = self.bbox_head[i] cls_score, bbox_pred = self._bbox_forward_test( i, x, rois, semantic_feat=semantic) ms_scores.append(cls_score) if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_meta[0]) cls_score = sum(ms_scores) / float(len(ms_scores)) bboxes, scores = self.bbox_head[-1].get_det_bboxes(rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=False, cfg=None) aug_bboxes.append(bboxes) aug_scores.append(scores) # after merging, bboxes will be rescaled to the original image size merged_bboxes, merged_scores = merge_aug_bboxes( aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, rcnn_test_cfg.score_thr, rcnn_test_cfg.nms, rcnn_test_cfg.max_per_img) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) if self.with_mask: if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head[-1].num_classes - 1)] else: aug_masks = [] aug_img_metas = [] for x, img_meta, semantic in zip(self.extract_feats(imgs), img_metas, semantic_feats): img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) mask_feats = self.mask_roi_extractor[-1]( x[:len(self.mask_roi_extractor[-1].featmap_strides)], mask_rois) if self.with_semantic: semantic_feat = semantic mask_semantic_feat = self.semantic_roi_extractor( [semantic_feat], mask_rois) if mask_semantic_feat.shape[-2:] != mask_feats.shape[ -2:]: mask_semantic_feat = F.adaptive_avg_pool2d( mask_semantic_feat, mask_feats.shape[-2:]) mask_feats += mask_semantic_feat last_feat = None for i in range(self.num_stages): mask_head = self.mask_head[i] if self.mask_info_flow: mask_pred, last_feat = mask_head( mask_feats, last_feat) else: mask_pred = mask_head(mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) aug_img_metas.append(img_meta) merged_masks = merge_aug_masks(aug_masks, aug_img_metas, self.test_cfg.rcnn) ori_shape = img_metas[0][0]['ori_shape'] segm_result = self.mask_head[-1].get_seg_masks( merged_masks, det_bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor=1.0, rescale=False) return bbox_result, segm_result else: return bbox_result
def simple_test(self, img, img_meta, proposals=None, rescale=False): x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals if self.with_semantic: _, semantic_feat = self.semantic_head(x) else: semantic_feat = None img_shape = img_meta[0]['img_shape'] ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] # "ms" in variable names means multi-stage ms_bbox_result = {} ms_segm_result = {} ms_scores = [] rcnn_test_cfg = self.test_cfg.rcnn rois = bbox2roi(proposal_list) for i in range(self.num_stages): bbox_head = self.bbox_head[i] cls_score, bbox_pred = self._bbox_forward_test( i, x, rois, semantic_feat=semantic_feat) ms_scores.append(cls_score) if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_meta[0]) cls_score = sum(ms_scores) / float(len(ms_scores)) det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) ms_bbox_result['ensemble'] = bbox_result if self.with_mask: if det_bboxes.shape[0] == 0: mask_classes = self.mask_head[-1].num_classes - 1 segm_result = [[] for _ in range(mask_classes)] else: _bboxes = (det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) aug_masks = [] mask_roi_extractor = self.mask_roi_extractor[-1] mask_feats = mask_roi_extractor( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_semantic and 'mask' in self.semantic_fusion: mask_semantic_feat = self.semantic_roi_extractor( [semantic_feat], mask_rois) mask_feats += mask_semantic_feat last_feat = None for i in range(self.num_stages): mask_head = self.mask_head[i] if self.mask_info_flow: mask_pred, last_feat = mask_head(mask_feats, last_feat) else: mask_pred = mask_head(mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, [img_meta] * self.num_stages, self.test_cfg.rcnn) segm_result = self.mask_head[-1].get_seg_masks( merged_masks, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['ensemble'] = segm_result if self.with_mask: results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: results = ms_bbox_result['ensemble'] return results
def simple_test(self, img, img_meta, proposals=None, rescale=False): """Run inference on a single image. Args: img (Tensor): must be in shape (N, C, H, W) img_meta (list[dict]): a list with one dictionary element. See `mmdet/datasets/pipelines/formatting.py:Collect` for details of meta dicts. proposals : if specified overrides rpn proposals rescale (bool): if True returns boxes in original image space Returns: dict: results """ x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals img_shape = img_meta[0]['img_shape'] ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] # "ms" in variable names means multi-stage ms_bbox_result = {} ms_segm_result = {} ms_scores = [] rcnn_test_cfg = self.test_cfg.rcnn rois = bbox2roi(proposal_list) for i in range(self.num_stages): bbox_roi_extractor = self.bbox_roi_extractor[i] bbox_head = self.bbox_head[i] bbox_feats = bbox_roi_extractor( x[:len(bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = bbox_head(bbox_feats) ms_scores.append(cls_score) if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_meta[0]) cls_score = sum(ms_scores) / self.num_stages det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) ms_bbox_result['ensemble'] = bbox_result if self.with_mask: if det_bboxes.shape[0] == 0: mask_classes = self.mask_head[-1].num_classes - 1 segm_result = [[] for _ in range(mask_classes)] else: if isinstance(scale_factor, float): # aspect ratio fixed _bboxes = ( det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) else: _bboxes = ( det_bboxes[:, :4] * torch.from_numpy(scale_factor).to(det_bboxes.device) if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) aug_masks = [] for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i] mask_feats = mask_roi_extractor( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head[i](mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, [img_meta] * self.num_stages, self.test_cfg.rcnn) segm_result = self.mask_head[-1].get_seg_masks( merged_masks, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['ensemble'] = segm_result if self.with_mask: results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: results = ms_bbox_result['ensemble'] return results