def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode(box_regression.view(-1, 4), concat_anchors.view(-1, 4)) proposals = proposals.view(N, -1, 4) result = [] for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result
def _test_feature_extractors(self, extractors, overwrite_cfgs, overwrite_in_channels): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get(name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format( name)) N, C_in, H, W = 2, in_channels, 24, 32 input = jt.random([N, C_in, H, W]).float32() bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual(out.shape[:2], ([N * len(bboxes), fe.out_channels]))
def __getitem__(self, idx): img, anno = super(COCODataset, self).__getitem__(idx) # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") classes = [obj["category_id"] for obj in anno] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = torch.tensor(classes) target.add_field("labels", classes) masks = [obj["segmentation"] for obj in anno] masks = SegmentationMask(masks, img.size, mode='poly') target.add_field("masks", masks) target = target.clip_to_image(remove_empty=True) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, idx
def forward_for_single_feature_map(self, anchors, box_cls, box_regression): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, _, H, W = box_cls.shape A = box_regression.shape[1] // 4 C = box_cls.shape[1] // A # put in the same format as anchors box_cls = permute_and_flatten(box_cls, N, A, C, H, W) box_cls = box_cls.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max_v=self.pre_nms_top_n) results = [] for i in range(box_cls.shape[0]): per_box_cls, per_box_regression, per_pre_nms_top_n,per_candidate_inds, per_anchors = \ box_cls[i],box_regression[i],pre_nms_top_n[i],candidate_inds[i],anchors[i] # Sort and select TopN # TODO most of this can be made out of the loop for # all images. # TODO:Yang: Not easy to do. Because the numbers of detections are # different in each image. Therefore, this part needs to be done # per image. per_box_cls = per_box_cls[per_candidate_inds] per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_candidate_nonzeros = \ per_candidate_inds.nonzero()[top_k_indices, :] per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] if per_class.numel() > 0: per_class += 1 detections = self.box_coder.decode( per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)) boxlist = BoxList(detections, per_anchors.size, mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", per_box_cls) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results
def prepare_boxlist(self, boxes, scores, image_shape): """ Returns BoxList from `boxes` and adds probability scores information as an extra field `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) boxlist = BoxList(boxes, image_shape, mode="xyxy") boxlist.add_field("scores", scores) return boxlist
def __getitem__(self, item): img = Image.open(self.image_lists[item]).convert("RGB") # dummy target w, h = img.size target = BoxList([[0, 0, w, h]], img.size, mode="xyxy") if self.transforms is not None: img, target = self.transforms(img, target) return img, target
def execute(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for each image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = jt.contrib.concat(labels, dim=0) index = jt.arange(num_masks) mask_prob = mask_prob[index, labels].unsqueeze(1) boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.masker: mask_prob = self.masker(mask_prob, boxes) results = [] for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results
def __getitem__(self, idx): img, anno = super(COCODataset, self).__getitem__(idx) if not self.is_train: if self._transforms is not None: img, target = self._transforms(img, None) return img, target, idx # filter crowd annotations # TODO might be better to add an extra field anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = np.array([obj["bbox"] for obj in anno], dtype=np.float32) boxes = boxes.reshape(-1, 4) target = BoxList(boxes, img.size, mode="xywh", to_jittor=False) target = target.convert("xyxy") classes = [obj["category_id"] for obj in anno] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = np.array(classes, dtype=np.int32) target.add_field("labels", classes) if self.with_masks and anno and "segmentation" in anno[0]: masks = [obj["segmentation"] for obj in anno] masks = SegmentationMask(masks, img.size, mode='poly', to_jittor=False) target.add_field("masks", masks) if self.with_masks and anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = PersonKeypoints(keypoints, img.size, to_jittor=False) target.add_field("keypoints", keypoints) target = target.clip_to_image(remove_empty=True) if self._transforms is not None: img, target = self._transforms(img, target) img = img.astype(np.float32) return img, target, idx
def forward(self, image_list, feature_maps): grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors = [] for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList(anchors_per_feature_map, (image_width, image_height), mode="xyxy") self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) return anchors
def get_groundtruth(self, index): img_id = self.ids[index] anno = ET.parse(self._annopath % img_id).getroot() anno = self._preprocess_annotation(anno) height, width = anno["im_info"] target = BoxList(anno["boxes"], (width, height), mode="xyxy") target.add_field("labels", anno["labels"]) target.add_field("difficult", anno["difficult"]) return target
def filter_results_v2(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes,4) scores = boxlist.get_field("scores").reshape(-1, num_classes) result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class # inds_all = (scores > self.score_thresh).int() scores = scores[:,1:] inds_all = scores > self.score_thresh # print(inds_all.shape) # inds_all = inds_all.transpose(1,0) inds_all = inds_all.nonzero() labels = inds_all[:,1]+1 ind_scores = scores[inds_all[:,0],inds_all[:,1]] ind_boxes = boxes[inds_all[:,0],inds_all[:,1],:] ind_boxes = ind_boxes.reshape(-1,4) result = BoxList(ind_boxes, boxlist.size, mode="xyxy") result.add_field("scores", ind_scores) result.add_field("labels", labels) result = boxlist_ml_nms(result, self.nms) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** # if number_of_detections > self.detections_per_img > 0: # cls_scores = result.get_field("scores") # image_thresh, _ = jt.kthvalue( # cls_scores, number_of_detections - self.detections_per_img + 1 # ) # keep = cls_scores >= image_thresh # keep = jt.nonzero(keep).squeeze(1) # result = result[keep] # Absolute limit detection imgs if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") scores, indices = jt.topk( cls_scores, self.detections_per_img ) result = result[indices] return result
def filter_results(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes * 4) scores = boxlist.get_field("scores").reshape(-1, num_classes) device = scores.device result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class inds_all = scores > self.score_thresh for j in range(1, num_classes): inds = inds_all[:, j].nonzero().squeeze(1) scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4 : (j + 1) * 4] boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.detections_per_img + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] return result
def execute(self, x, boxes): mask_prob = x scores = None if self.keypointer: mask_prob, scores = self.keypointer(x, boxes) assert len(boxes) == 1, "Only non-batched inference supported for now" boxes_per_image = [box.bbox.size(0) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) scores = scores.split(boxes_per_image, dim=0) results = [] for prob, box, score in zip(mask_prob, boxes, scores): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) prob = PersonKeypoints(prob, box.size) prob.add_field("logits", score) bbox.add_field("keypoints", prob) results.append(bbox) return results
def __getitem__(self, idx): img_path = self.img_paths[idx] ann_path = self.ann_paths[idx] if self.mode == "mask": ann = jt.array(np.asarray(Image.open(ann_path))) # masks are represented with tensors boxes, segmentations, labels = self._processBinayMasks(ann) else: with open(ann_path, "r") as ann_file: ann = json.load(ann_file) # masks are represented with polygons boxes, segmentations, labels = self._processPolygons(ann) boxes, segmentations, labels = self._filterGT(boxes, segmentations, labels) if len(segmentations) == 0: empty_ann_path = self.get_img_info(idx)["ann_path"] print("EMPTY ENTRY:", empty_ann_path) # self.img_paths.pop(idx) # self.ann_paths.pop(idx) img, target, _ = self[(idx + 1) % len(self)] # just override this image with the next return img, target, idx img = Image.open(img_path) # Compose all into a BoxList instance target = BoxList(boxes, img.size, mode="xyxy") target.add_field("labels", jt.array(labels)) masks = SegmentationMask(segmentations, img.size, mode=self.mode) target.add_field("masks", masks) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, idx
def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ # global II # import pickle N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).reshape(N, -1) # print('objectness',objectness.mean()) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) # print('regression',box_regression.mean()) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) # print(pre_nms_top_n) #print('objectness',objectness) # objectness = jt.array(pickle.load(open(f'/home/lxl/objectness_0_{II}.pkl','rb'))) # print(objectness.shape) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) # print(II,'topk',topk_idx.sum(),topk_idx.shape) batch_idx = jt.arange(N).unsqueeze(1) # pickle.dump(topk_idx.numpy(),open(f'/home/lxl/topk_idx_{II}_jt.pkl','wb')) # topk_idx_tmp = topk_idx.numpy() # batch_idx = jt.array(pickle.load(open(f'/home/lxl/batch_idx_{II}.pkl','rb'))) # topk_idx = jt.array(pickle.load(open(f'/home/lxl/topk_idx_{II}.pkl','rb'))) # err = np.abs(topk_idx_tmp-topk_idx.numpy()) # print('Error!!!!!!!!!!!!!!!!',err.sum()) # print(err.nonzero()) #print('box_regression0',box_regression) #batch_idx = jt.index(topk_idx.shape,dim=0) box_regression = box_regression[batch_idx, topk_idx] #print('box_regression1',box_regression) image_shapes = [box.size for box in anchors] concat_anchors = jt.contrib.concat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] # box_regression = jt.array(pickle.load(open(f'/home/lxl/box_regression_{II}.pkl','rb'))) # concat_anchors = jt.array(pickle.load(open(f'/home/lxl/concat_anchors_{II}.pkl','rb'))) proposals = self.box_coder.decode(box_regression.reshape(-1, 4), concat_anchors.reshape(-1, 4)) proposals = proposals.reshape(N, -1, 4) # proposals = jt.array(pickle.load(open(f'/home/lxl/proposal_{II}.pkl','rb'))) # objectness = jt.array(pickle.load(open(f'/home/lxl/objectness_{II}.pkl','rb'))) # II+=1 result = [] for i in range(len(image_shapes)): proposal, score, im_shape = proposals[i], objectness[ i], image_shapes[i] boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result
def evaluate_box_proposals( predictions, dataset, thresholds=None, area="all", limit=None ): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for image_id, prediction in predictions.items(): original_id = dataset.id_to_img_map[image_id] img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = prediction.get_field("objectness").sort(descending=True)[1] prediction = prediction[inds] ann_ids = dataset.coco.getAnnIds(imgIds=original_id) anno = dataset.coco.loadAnns(ann_ids) gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0] gt_boxes = jt.array(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert( "xyxy" ) gt_areas = jt.array([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if len(prediction) == 0: continue if limit is not None and len(prediction) > limit: prediction = prediction[:limit] overlaps = boxlist_iou(prediction, gt_boxes) _gt_overlaps = jt.zeros(len(gt_boxes)) for j in range(min(len(prediction), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = jt.contrib.concat(gt_overlaps, dim=0) _,gt_overlaps = jt.argsort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = jt.array(np.arange(0.5, 0.95 + 1e-5, step)).float32() recalls = jt.zeros(thresholds.shape,dtype=thresholds.dtype) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, }
def forward_for_single_feature_map(self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, C, H, W = box_cls.shape # put in the same format as locations box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1) box_cls = box_cls.reshape(N, -1, self.num_classes - 1).sigmoid() box_regression = box_regression.view(N, self.dense_points * 4, H, W).permute(0, 2, 3, 1) box_regression = box_regression.reshape(N, -1, 4) centerness = centerness.view(N, self.dense_points, H, W).permute(0, 2, 3, 1) centerness = centerness.reshape(N, -1).sigmoid() candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max_v=self.pre_nms_top_n) # multiply the classification scores with centerness scores box_cls = box_cls * centerness[:, :].unsqueeze(2) results = [] #print('forward_for_single_feature_map start',N) for i in range(N): #print(i) per_box_cls = box_cls[i] per_candidate_inds = candidate_inds[i] #print(per_candidate_inds.shape,per_box_cls.shape) # if per_candidate_inds.sum().item()>0: # per_box_cls = per_box_cls[per_candidate_inds] # else: # per_box_cls = jt.zeros((0,),dtype=per_box_cls.dtype) #print(per_candidate_inds.shape,jt.sum(per_candidate_inds)) per_box_cls = per_box_cls[per_candidate_inds] per_candidate_nonzeros = per_candidate_inds.nonzero() per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] # if per_candidate_nonzeros.numel()>0: # per_class = per_candidate_nonzeros[:, 1] + 1 per_class = per_candidate_nonzeros[:, 1] + 1 #print(per_candidate_nonzeros.shape) per_box_regression = box_regression[i] #print('GG',per_box_loc.numel(),per_box_loc.shape) # if per_box_loc.numel()>0: # per_box_regression = per_box_regression[per_box_loc] # per_locations = locations[per_box_loc] # else: # shape = list(per_box_regression.shape) # shape[0]=0 # per_box_regression = jt.zeros(shape,dtype=per_box_regression.dtype) # shape = list(locations.shape) # shape[0]=0 # per_locations = jt.zeros(shape,dtype=locations.dtype) per_box_regression = per_box_regression[per_box_loc] per_locations = locations[per_box_loc] #print('??') #print('per_box_cls1',per_box_cls.mean()) per_pre_nms_top_n = pre_nms_top_n[i] #print('per_locations',jt.mean(per_locations)) #print('per_box_regressions',jt.mean(per_box_regression)) #print(per_pre_nms_top_n.item(),per_candidate_inds.sum().item()) if per_candidate_inds.sum().item() > per_pre_nms_top_n.item(): per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n.item(), sorted=False) per_class = per_class[top_k_indices] per_box_regression = per_box_regression[top_k_indices] per_locations = per_locations[top_k_indices] #print('per_box_cls',per_box_cls.mean()) #print('emmm',jt.mean(per_locations)) #print('hhh',jt.mean(per_box_regression)) # if per_box_loc.numel()>0: # detections = jt.stack([ # per_locations[:, 0] - per_box_regression[:, 0], # per_locations[:, 1] - per_box_regression[:, 1], # per_locations[:, 0] + per_box_regression[:, 2], # per_locations[:, 1] + per_box_regression[:, 3], # ], dim=1) # else: # detections = jt.zeros((0,4),dtype=per_locations.dtype) detections = jt.stack([ per_locations[:, 0] - per_box_regression[:, 0], per_locations[:, 1] - per_box_regression[:, 1], per_locations[:, 0] + per_box_regression[:, 2], per_locations[:, 1] + per_box_regression[:, 3], ], dim=1) #print('detections',jt.mean(detections),detections.shape) h, w = image_sizes[i] boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy") boxlist.add_field("labels", per_class) if self.is_sqrt: boxlist.add_field("scores", per_box_cls.sqrt()) else: boxlist.add_field("scores", per_box_cls) #print('??',boxlist.get_field('scores')) if boxlist.bbox.numel() > 0: boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) #print('Good') return results
def im_detect_bbox_aug(model, images): # Collect detections computed under different transformations boxlists_ts = [] for _ in range(len(images)): boxlists_ts.append([]) def add_preds_t(boxlists_t): for i, boxlist_t in enumerate(boxlists_t): if len(boxlists_ts[i]) == 0: # The first one is identity transform, no need to resize the boxlist boxlists_ts[i].append(boxlist_t) else: # Resize the boxlist as the first one boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size)) # Compute detections for the original image (identity transform) boxlists_i = im_detect_bbox( model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, ) add_preds_t(boxlists_i) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: boxlists_hf = im_detect_bbox_hflip( model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, ) add_preds_t(boxlists_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE boxlists_scl = im_detect_bbox_scale( model, images, scale, max_size, ) add_preds_t(boxlists_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: boxlists_scl_hf = im_detect_bbox_scale(model, images, scale, max_size, hflip=True) add_preds_t(boxlists_scl_hf) # Merge boxlists detected by different bbox aug params boxlists = [] for i, boxlist_ts in enumerate(boxlists_ts): bbox = jt.contrib.concat([boxlist_t.bbox for boxlist_t in boxlist_ts]) scores = jt.contrib.concat( [boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]) boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode) boxlist.add_field('scores', scores) boxlists.append(boxlist) # Apply NMS and limit the final detections results = [] post_processor = make_roi_box_post_processor(cfg) for boxlist in boxlists: results.append( post_processor.filter_results(boxlist, cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES)) return results
def calcIoU(box1, box2, image_size=(600, 600)): boxlist1 = BoxList(box1, image_size) boxlist2 = BoxList(box2, image_size) iou = boxlist_iou(boxlist1, boxlist2) return iou
def filter_results(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes * 4) scores = boxlist.get_field("scores").reshape(-1, num_classes) result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class # inds_all = (scores > self.score_thresh).int() inds_all = scores > self.score_thresh # print(self.score_thresh,num_classes) # print(inds_all.shape) # inds_all = inds_all.transpose(1,0) inds_nonzeros = [ inds_all[:,j].nonzero() for j in range(1, num_classes) ] jt.sync(inds_nonzeros) for j in range(1, num_classes): # with nvtx_scope("aa"): # inds = inds_all[:,j].nonzero().squeeze(1) # with nvtx_scope("bb"): # scores_j = scores[inds, j] # boxes_j = boxes[inds, j * 4 : (j + 1) * 4] # with nvtx_scope("cc"): # boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") # with nvtx_scope("cc2"): # boxlist_for_class.add_field("scores", scores_j) # with nvtx_scope("cc3"): # boxlist_for_class = boxlist_nms( # boxlist_for_class, self.nms # ) # with nvtx_scope("dd"): # num_labels = len(boxlist_for_class) # with nvtx_scope("dd2"): # boxlist_for_class.add_field( # "labels", jt.full((num_labels,), j).int32() # ) # result.append(boxlist_for_class) # inds = inds_all[:,j].nonzero().squeeze(1) inds = inds_nonzeros[j-1] if inds.shape[0] == 0: continue inds = inds.squeeze(1) scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4 : (j + 1) * 4] boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms ) num_labels = len(boxlist_for_class) # print(j,num_labels) boxlist_for_class.add_field( "labels", jt.full((num_labels,), j).int32() ) result.append(boxlist_for_class) result = cat_boxlist(result) if not result.has_field('labels'): result.add_field('labels',jt.empty((0,))) if not result.has_field('scores'): result.add_field('scores',jt.empty((0,))) number_of_detections = len(result) #Limit to max_per_image detections **over all classes** if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") image_thresh, _ = jt.kthvalue( cls_scores, number_of_detections - self.detections_per_img + 1 ) keep = cls_scores >= image_thresh keep = jt.nonzero(keep).squeeze(1) result = result[keep] # # Absolute limit detection imgs # if number_of_detections > self.detections_per_img > 0: # cls_scores = result.get_field("scores") # scores, indices = jt.topk( # cls_scores, self.detections_per_img # ) # result = result[indices] return result