def add_single_scale_rpn_outputs(model, blob_in, dim_in, spatial_scale):
    """Add RPN outputs to a single scale model (i.e., no FPN)."""
    anchors = generate_anchors(stride=1. / spatial_scale,
                               sizes=cfg.RPN.SIZES,
                               aspect_ratios=cfg.RPN.ASPECT_RATIOS)
    num_anchors = anchors.shape[0]
    dim_out = dim_in
    # RPN hidden representation
    model.Conv(blob_in,
               'conv_rpn',
               dim_in,
               dim_out,
               kernel=3,
               pad=1,
               stride=1,
               weight_init=gauss_fill(0.01),
               bias_init=const_fill(0.0))
    model.Relu('conv_rpn', 'conv_rpn')
    # Proposal classification scores
    model.Conv('conv_rpn',
               'rpn_cls_logits',
               dim_in,
               num_anchors,
               kernel=1,
               pad=0,
               stride=1,
               weight_init=gauss_fill(0.01),
               bias_init=const_fill(0.0))
    # Proposal bbox regression deltas
    model.Conv('conv_rpn',
               'rpn_bbox_pred',
               dim_in,
               4 * num_anchors,
               kernel=1,
               pad=0,
               stride=1,
               weight_init=gauss_fill(0.01),
               bias_init=const_fill(0.0))

    if not model.train or cfg.MODEL.FASTER_RCNN:
        # Proposals are needed during:
        #  1) inference (== not model.train) for RPN only and Faster R-CNN
        #  OR
        #  2) training for Faster R-CNN
        # Otherwise (== training for RPN only), proposals are not needed
        model.net.Sigmoid('rpn_cls_logits', 'rpn_cls_probs')
        model.GenerateProposals(['rpn_cls_probs', 'rpn_bbox_pred', 'im_info'],
                                ['rpn_rois', 'rpn_roi_probs'],
                                anchors=anchors,
                                spatial_scale=spatial_scale)

    if cfg.MODEL.FASTER_RCNN:
        if model.train:
            # Add op that generates training labels for in-network RPN proposals
            model.GenerateProposalLabels(['rpn_rois', 'roidb', 'im_info'])
        else:
            # Alias rois to rpn_rois for inference
            model.net.Alias('rpn_rois', 'rois')
Exemple #2
0
def add_rfcn_outputs(model, blob_in, dim_in, dim_reduce, spatial_scale):
    if dim_reduce is not None:
        # Optional dim reduction
        blob_in = model.Conv(blob_in,
                             'conv_dim_reduce',
                             dim_in,
                             dim_reduce,
                             kernel=1,
                             pad=0,
                             stride=1,
                             weight_init=gauss_fill(0.01),
                             bias_init=const_fill(0.0))
        blob_in = model.Relu(blob_in, blob_in)
        dim_in = dim_reduce
    # Classification conv
    model.Conv(blob_in,
               'conv_cls',
               dim_in,
               model.num_classes * cfg.RFCN.PS_GRID_SIZE**2,
               kernel=1,
               pad=0,
               stride=1,
               weight_init=gauss_fill(0.01),
               bias_init=const_fill(0.0))
    # Bounding-box regression conv
    num_bbox_reg_classes = (2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else
                            model.num_classes)
    model.Conv(blob_in,
               'conv_bbox_pred',
               dim_in,
               4 * num_bbox_reg_classes * cfg.RFCN.PS_GRID_SIZE**2,
               kernel=1,
               pad=0,
               stride=1,
               weight_init=gauss_fill(0.01),
               bias_init=const_fill(0.0))
    # Classification PS RoI pooling
    model.net.PSRoIPool(['conv_cls', 'rois'],
                        ['psroipooled_cls', '_mapping_channel_cls'],
                        group_size=cfg.RFCN.PS_GRID_SIZE,
                        output_dim=model.num_classes,
                        spatial_scale=spatial_scale)
    model.AveragePool('psroipooled_cls',
                      'cls_score_4d',
                      kernel=cfg.RFCN.PS_GRID_SIZE)
    model.net.Reshape('cls_score_4d', ['cls_score', '_cls_scores_shape'],
                      shape=(-1, cfg.MODEL.NUM_CLASSES))
    if not model.train:
        model.Softmax('cls_score', 'cls_prob', engine='CUDNN')
    # Bbox regression PS RoI pooling
    model.net.PSRoIPool(['conv_bbox_pred', 'rois'],
                        ['psroipooled_bbox', '_mapping_channel_bbox'],
                        group_size=cfg.RFCN.PS_GRID_SIZE,
                        output_dim=4 * num_bbox_reg_classes,
                        spatial_scale=spatial_scale)
    model.AveragePool('psroipooled_bbox',
                      'bbox_pred',
                      kernel=cfg.RFCN.PS_GRID_SIZE)
Exemple #3
0
def mask_rcnn_fcn_head_v0upshare(model, blob_in, dim_in, spatial_scale):
    """Use a ResNet "conv5" / "stage5" head for mask prediction. Weights and
    computation are shared with the conv5 box head. Computation can only be
    shared during training, since inference is cascaded.

    v0upshare design: conv5, convT 2x2.
    """
    # Since box and mask head are shared, these must match
    assert cfg.MRCNN.ROI_XFORM_RESOLUTION == cfg.FAST_RCNN.ROI_XFORM_RESOLUTION

    if model.train:  # share computation with bbox head at training time
        dim_conv5 = 2048
        blob_conv5 = model.net.SampleAs(['res5_2_sum', 'roi_has_mask_int32'],
                                        ['_[mask]_res5_2_sum_sliced'])
    else:  # re-compute at test time
        blob_conv5, dim_conv5 = add_ResNet_roi_conv5_head_for_masks(
            model, blob_in, dim_in, spatial_scale)

    dim_reduced = cfg.MRCNN.DIM_REDUCED

    blob_mask = model.ConvTranspose(
        blob_conv5,
        'conv5_mask',
        dim_conv5,
        dim_reduced,
        kernel=2,
        pad=0,
        stride=2,
        weight_init=(cfg.MRCNN.CONV_INIT, {
            'std': 0.001
        }),  # std only for gauss
        bias_init=const_fill(0.0))
    model.Relu('conv5_mask', 'conv5_mask')

    return blob_mask, dim_reduced
Exemple #4
0
def add_mask_rcnn_outputs(model, blob_in, dim):
    """Add Mask R-CNN specific outputs: either mask logits or probs."""
    num_cls = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1

    if cfg.MRCNN.USE_FC_OUTPUT:
        # Predict masks with a fully connected layer (ignore 'fcn' in the blob
        # name)
        blob_out = model.FC(blob_in,
                            'mask_fcn_logits',
                            dim,
                            num_cls * cfg.MRCNN.RESOLUTION**2,
                            weight_init=gauss_fill(0.001),
                            bias_init=const_fill(0.0))
    else:
        # Predict mask using Conv

        # Use GaussianFill for class-agnostic mask prediction; fills based on
        # fan-in can be too large in this case and cause divergence
        fill = (cfg.MRCNN.CONV_INIT
                if cfg.MRCNN.CLS_SPECIFIC_MASK else 'GaussianFill')
        blob_out = model.Conv(blob_in,
                              'mask_fcn_logits',
                              dim,
                              num_cls,
                              kernel=1,
                              pad=0,
                              stride=1,
                              weight_init=(fill, {
                                  'std': 0.001
                              }),
                              bias_init=const_fill(0.0))

        if cfg.MRCNN.UPSAMPLE_RATIO > 1:
            blob_out = model.BilinearInterpolation('mask_fcn_logits',
                                                   'mask_fcn_logits_up',
                                                   num_cls, num_cls,
                                                   cfg.MRCNN.UPSAMPLE_RATIO)

    if not model.train:  # == if test
        blob_out = model.net.Sigmoid(blob_out, 'mask_fcn_probs')

    return blob_out
def add_topdown_lateral_module(
    model, fpn_top, fpn_lateral, fpn_bottom, dim_top, dim_lateral
):
    """Add a top-down lateral module."""
    # Lateral 1x1 conv
    if cfg.FPN.USE_GN:
        # use GroupNorm
        lat = model.ConvGN(
            fpn_lateral,
            fpn_bottom + '_lateral',
            dim_in=dim_lateral,
            dim_out=dim_top,
            group_gn=get_group_gn(dim_top),
            kernel=1,
            pad=0,
            stride=1,
            weight_init=(
                const_fill(0.0) if cfg.FPN.ZERO_INIT_LATERAL
                else ('XavierFill', {})),
            bias_init=const_fill(0.0)
        )
    else:
        lat = model.Conv(
            fpn_lateral,
            fpn_bottom + '_lateral',
            dim_in=dim_lateral,
            dim_out=dim_top,
            kernel=1,
            pad=0,
            stride=1,
            weight_init=(
                const_fill(0.0)
                if cfg.FPN.ZERO_INIT_LATERAL else ('XavierFill', {})
            ),
            bias_init=const_fill(0.0)
        )
    # Top-down 2x upsampling
    td = model.net.UpsampleNearest(fpn_top, fpn_bottom + '_topdown', scale=2)
    # Sum lateral and top-down
    model.net.Sum([lat, td], fpn_bottom)
Exemple #6
0
def mask_rcnn_fcn_head_v1upXconvs_gn(model, blob_in, dim_in, spatial_scale,
                                     num_convs):
    """v1upXconvs design: X * (conv 3x3), convT 2x2, with GroupNorm"""
    current = model.RoIFeatureTransform(
        blob_in,
        blob_out='_mask_roi_feat',
        blob_rois='mask_rois',
        method=cfg.MRCNN.ROI_XFORM_METHOD,
        resolution=cfg.MRCNN.ROI_XFORM_RESOLUTION,
        sampling_ratio=cfg.MRCNN.ROI_XFORM_SAMPLING_RATIO,
        spatial_scale=spatial_scale)

    dilation = cfg.MRCNN.DILATION
    dim_inner = cfg.MRCNN.DIM_REDUCED

    for i in range(num_convs):
        current = model.ConvGN(current,
                               '_mask_fcn' + str(i + 1),
                               dim_in,
                               dim_inner,
                               group_gn=get_group_gn(dim_inner),
                               kernel=3,
                               pad=1 * dilation,
                               stride=1,
                               weight_init=(cfg.MRCNN.CONV_INIT, {
                                   'std': 0.001
                               }),
                               bias_init=('ConstantFill', {
                                   'value': 0.
                               }))
        current = model.Relu(current, current)
        dim_in = dim_inner

    # upsample layer
    model.ConvTranspose(current,
                        'conv5_mask',
                        dim_inner,
                        dim_inner,
                        kernel=2,
                        pad=0,
                        stride=2,
                        weight_init=(cfg.MRCNN.CONV_INIT, {
                            'std': 0.001
                        }),
                        bias_init=const_fill(0.0))
    blob_mask = model.Relu('conv5_mask', 'conv5_mask')

    return blob_mask, dim_inner
Exemple #7
0
def mask_rcnn_fcn_head_v0up(model, blob_in, dim_in, spatial_scale):
    """v0up design: conv5, deconv 2x2 (no weight sharing with the box head)."""
    blob_conv5, dim_conv5 = add_ResNet_roi_conv5_head_for_masks(
        model, blob_in, dim_in, spatial_scale)

    dim_reduced = cfg.MRCNN.DIM_REDUCED

    model.ConvTranspose(blob_conv5,
                        'conv5_mask',
                        dim_conv5,
                        dim_reduced,
                        kernel=2,
                        pad=0,
                        stride=2,
                        weight_init=('GaussianFill', {
                            'std': 0.001
                        }),
                        bias_init=const_fill(0.0))
    blob_mask = model.Relu('conv5_mask', 'conv5_mask')

    return blob_mask, dim_reduced
def add_keypoint_outputs(model, blob_in, dim):
    """Add Mask R-CNN keypoint specific outputs: keypoint heatmaps."""
    # NxKxHxW
    upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

    if cfg.KRCNN.USE_DECONV:
        # Apply ConvTranspose to the feature representation; results in 2x
        # upsampling
        blob_in = model.ConvTranspose(
            blob_in,
            'kps_deconv',
            dim,
            cfg.KRCNN.DECONV_DIM,
            kernel=cfg.KRCNN.DECONV_KERNEL,
            pad=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1),
            stride=2,
            weight_init=gauss_fill(0.01),
            bias_init=const_fill(0.0)
        )
        model.Relu('kps_deconv', 'kps_deconv')
        dim = cfg.KRCNN.DECONV_DIM

    if upsample_heatmap:
        blob_name = 'kps_score_lowres'
    else:
        blob_name = 'kps_score'

    if cfg.KRCNN.USE_DECONV_OUTPUT:
        # Use ConvTranspose to predict heatmaps; results in 2x upsampling
        blob_out = model.ConvTranspose(
            blob_in,
            blob_name,
            dim,
            cfg.KRCNN.NUM_KEYPOINTS,
            kernel=cfg.KRCNN.DECONV_KERNEL,
            pad=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1),
            stride=2,
            weight_init=(cfg.KRCNN.CONV_INIT, {'std': 0.001}),
            bias_init=const_fill(0.0)
        )
    else:
        # Use Conv to predict heatmaps; does no upsampling
        blob_out = model.Conv(
            blob_in,
            blob_name,
            dim,
            cfg.KRCNN.NUM_KEYPOINTS,
            kernel=1,
            pad=0,
            stride=1,
            weight_init=(cfg.KRCNN.CONV_INIT, {'std': 0.001}),
            bias_init=const_fill(0.0)
        )

    if upsample_heatmap:
        # Increase heatmap output size via bilinear upsampling
        blob_out = model.BilinearInterpolation(
            blob_out, 'kps_score', cfg.KRCNN.NUM_KEYPOINTS,
            cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE
        )

    return blob_out
def add_fpn_rpn_outputs(model, blobs_in, dim_in, spatial_scales):
    """Add RPN on FPN specific outputs."""
    num_anchors = len(cfg.FPN.RPN_ASPECT_RATIOS)
    dim_out = dim_in

    k_max = cfg.FPN.RPN_MAX_LEVEL  # coarsest level of pyramid
    k_min = cfg.FPN.RPN_MIN_LEVEL  # finest level of pyramid
    assert len(blobs_in) == k_max - k_min + 1
    for lvl in range(k_min, k_max + 1):
        bl_in = blobs_in[k_max - lvl]  # blobs_in is in reversed order
        sc = spatial_scales[k_max - lvl]  # in reversed order
        slvl = str(lvl)

        if lvl == k_min:
            # Create conv ops with randomly initialized weights and
            # zeroed biases for the first FPN level; these will be shared by
            # all other FPN levels
            # RPN hidden representation
            conv_rpn_fpn = model.Conv(
                bl_in,
                'conv_rpn_fpn' + slvl,
                dim_in,
                dim_out,
                kernel=3,
                pad=1,
                stride=1,
                weight_init=gauss_fill(0.01),
                bias_init=const_fill(0.0)
            )
            model.Relu(conv_rpn_fpn, conv_rpn_fpn)
            # Proposal classification scores
            rpn_cls_logits_fpn = model.Conv(
                conv_rpn_fpn,
                'rpn_cls_logits_fpn' + slvl,
                dim_in,
                num_anchors,
                kernel=1,
                pad=0,
                stride=1,
                weight_init=gauss_fill(0.01),
                bias_init=const_fill(0.0)
            )
            # Proposal bbox regression deltas
            rpn_bbox_pred_fpn = model.Conv(
                conv_rpn_fpn,
                'rpn_bbox_pred_fpn' + slvl,
                dim_in,
                4 * num_anchors,
                kernel=1,
                pad=0,
                stride=1,
                weight_init=gauss_fill(0.01),
                bias_init=const_fill(0.0)
            )
        else:
            # Share weights and biases
            sk_min = str(k_min)
            # RPN hidden representation
            conv_rpn_fpn = model.ConvShared(
                bl_in,
                'conv_rpn_fpn' + slvl,
                dim_in,
                dim_out,
                kernel=3,
                pad=1,
                stride=1,
                weight='conv_rpn_fpn' + sk_min + '_w',
                bias='conv_rpn_fpn' + sk_min + '_b'
            )
            model.Relu(conv_rpn_fpn, conv_rpn_fpn)
            # Proposal classification scores
            rpn_cls_logits_fpn = model.ConvShared(
                conv_rpn_fpn,
                'rpn_cls_logits_fpn' + slvl,
                dim_in,
                num_anchors,
                kernel=1,
                pad=0,
                stride=1,
                weight='rpn_cls_logits_fpn' + sk_min + '_w',
                bias='rpn_cls_logits_fpn' + sk_min + '_b'
            )
            # Proposal bbox regression deltas
            rpn_bbox_pred_fpn = model.ConvShared(
                conv_rpn_fpn,
                'rpn_bbox_pred_fpn' + slvl,
                dim_in,
                4 * num_anchors,
                kernel=1,
                pad=0,
                stride=1,
                weight='rpn_bbox_pred_fpn' + sk_min + '_w',
                bias='rpn_bbox_pred_fpn' + sk_min + '_b'
            )

        if not model.train or cfg.MODEL.FASTER_RCNN:
            # Proposals are needed during:
            #  1) inference (== not model.train) for RPN only and Faster R-CNN
            #  OR
            #  2) training for Faster R-CNN
            # Otherwise (== training for RPN only), proposals are not needed
            lvl_anchors = generate_anchors(
                stride=2.**lvl,
                sizes=(cfg.FPN.RPN_ANCHOR_START_SIZE * 2.**(lvl - k_min), ),
                aspect_ratios=cfg.FPN.RPN_ASPECT_RATIOS
            )
            rpn_cls_probs_fpn = model.net.Sigmoid(
                rpn_cls_logits_fpn, 'rpn_cls_probs_fpn' + slvl
            )
            model.GenerateProposals(
                [rpn_cls_probs_fpn, rpn_bbox_pred_fpn, 'im_info'],
                ['rpn_rois_fpn' + slvl, 'rpn_roi_probs_fpn' + slvl],
                anchors=lvl_anchors,
                spatial_scale=sc
            )
def add_fpn(model, fpn_level_info):
    """Add FPN connections based on the model described in the FPN paper."""
    # FPN levels are built starting from the highest/coarest level of the
    # backbone (usually "conv5"). First we build down, recursively constructing
    # lower/finer resolution FPN levels. Then we build up, constructing levels
    # that are even higher/coarser than the starting level.
    fpn_dim = cfg.FPN.DIM
    min_level, max_level = get_min_max_levels()
    # Count the number of backbone stages that we will generate FPN levels for
    # starting from the coarest backbone stage (usually the "conv5"-like level)
    # E.g., if the backbone level info defines stages 4 stages: "conv5",
    # "conv4", ... "conv2" and min_level=2, then we end up with 4 - (2 - 2) = 4
    # backbone stages to add FPN to.
    num_backbone_stages = (
        len(fpn_level_info.blobs) - (min_level - LOWEST_BACKBONE_LVL)
    )

    lateral_input_blobs = fpn_level_info.blobs[:num_backbone_stages]
    output_blobs = [
        'fpn_inner_{}'.format(s)
        for s in fpn_level_info.blobs[:num_backbone_stages]
    ]
    fpn_dim_lateral = fpn_level_info.dims
    xavier_fill = ('XavierFill', {})

    # For the coarsest backbone level: 1x1 conv only seeds recursion
    if cfg.FPN.USE_GN:
        # use GroupNorm
        c = model.ConvGN(
            lateral_input_blobs[0],
            output_blobs[0],  # note: this is a prefix
            dim_in=fpn_dim_lateral[0],
            dim_out=fpn_dim,
            group_gn=get_group_gn(fpn_dim),
            kernel=1,
            pad=0,
            stride=1,
            weight_init=xavier_fill,
            bias_init=const_fill(0.0)
        )
        output_blobs[0] = c  # rename it
    else:
        model.Conv(
            lateral_input_blobs[0],
            output_blobs[0],
            dim_in=fpn_dim_lateral[0],
            dim_out=fpn_dim,
            kernel=1,
            pad=0,
            stride=1,
            weight_init=xavier_fill,
            bias_init=const_fill(0.0)
        )

    #
    # Step 1: recursively build down starting from the coarsest backbone level
    #

    # For other levels add top-down and lateral connections
    for i in range(num_backbone_stages - 1):
        add_topdown_lateral_module(
            model,
            output_blobs[i],             # top-down blob
            lateral_input_blobs[i + 1],  # lateral blob
            output_blobs[i + 1],         # next output blob
            fpn_dim,                     # output dimension
            fpn_dim_lateral[i + 1]       # lateral input dimension
        )

    # Post-hoc scale-specific 3x3 convs
    blobs_fpn = []
    spatial_scales = []
    for i in range(num_backbone_stages):
        if cfg.FPN.USE_GN:
            # use GroupNorm
            fpn_blob = model.ConvGN(
                output_blobs[i],
                'fpn_{}'.format(fpn_level_info.blobs[i]),
                dim_in=fpn_dim,
                dim_out=fpn_dim,
                group_gn=get_group_gn(fpn_dim),
                kernel=3,
                pad=1,
                stride=1,
                weight_init=xavier_fill,
                bias_init=const_fill(0.0)
            )
        else:
            fpn_blob = model.Conv(
                output_blobs[i],
                'fpn_{}'.format(fpn_level_info.blobs[i]),
                dim_in=fpn_dim,
                dim_out=fpn_dim,
                kernel=3,
                pad=1,
                stride=1,
                weight_init=xavier_fill,
                bias_init=const_fill(0.0)
            )
        blobs_fpn += [fpn_blob]
        spatial_scales += [fpn_level_info.spatial_scales[i]]

    #
    # Step 2: build up starting from the coarsest backbone level
    #

    # Check if we need the P6 feature map
    if not cfg.FPN.EXTRA_CONV_LEVELS and max_level == HIGHEST_BACKBONE_LVL + 1:
        # Original FPN P6 level implementation from our CVPR'17 FPN paper
        P6_blob_in = blobs_fpn[0]
        P6_name = P6_blob_in + '_subsampled_2x'
        # Use max pooling to simulate stride 2 subsampling
        P6_blob = model.MaxPool(P6_blob_in, P6_name, kernel=1, pad=0, stride=2)
        blobs_fpn.insert(0, P6_blob)
        spatial_scales.insert(0, spatial_scales[0] * 0.5)

    # Coarser FPN levels introduced for RetinaNet
    if cfg.FPN.EXTRA_CONV_LEVELS and max_level > HIGHEST_BACKBONE_LVL:
        fpn_blob = fpn_level_info.blobs[0]
        dim_in = fpn_level_info.dims[0]
        for i in range(HIGHEST_BACKBONE_LVL + 1, max_level + 1):
            fpn_blob_in = fpn_blob
            if i > HIGHEST_BACKBONE_LVL + 1:
                fpn_blob_in = model.Relu(fpn_blob, fpn_blob + '_relu')
            fpn_blob = model.Conv(
                fpn_blob_in,
                'fpn_' + str(i),
                dim_in=dim_in,
                dim_out=fpn_dim,
                kernel=3,
                pad=1,
                stride=2,
                weight_init=xavier_fill,
                bias_init=const_fill(0.0)
            )
            dim_in = fpn_dim
            blobs_fpn.insert(0, fpn_blob)
            spatial_scales.insert(0, spatial_scales[0] * 0.5)

    return blobs_fpn, fpn_dim, spatial_scales
Exemple #11
0
def add_cascade_fast_rcnn_outputs(model, blobs_in, dim, stage_num):
    """Add RoI classification and bounding box regression output ops."""
    # Box regression layer
    num_bbox_reg_classes = (
        2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes
    )
    if stage_num == 1:
        model.FC(
            blobs_in[0],
            'cls_score_1st',
            dim,
            model.num_classes,
            weight_init=gauss_fill(0.01),
            bias_init=const_fill(0.0)
        )
        if not model.train:  # == if test
            # Only add softmax when testing; during training the softmax is combined
            # with the label cross entropy loss for numerical stability
            model.Softmax('cls_score_1st', 'cls_prob_1st', engine='CUDNN')
        model.FC(
            blobs_in[0],
            'bbox_pred_1st',
            dim,
            num_bbox_reg_classes * 4,
            weight_init=gauss_fill(0.001),
            bias_init=const_fill(0.0)
        )

    elif stage_num == 2:
        model.FC(
            blobs_in[0],
            'cls_score_2nd',
            dim,
            model.num_classes,
            weight_init=gauss_fill(0.01),
            bias_init=const_fill(0.0)
        )
        if not model.train:  # == if test
            # Only add softmax when testing; during training the softmax is combined
            # with the label cross entropy loss for numerical stability
            assert len(blobs_in) == 2, 'during inference, need fc2_2nd and fc2_1st_2nd as in put blobsin rcnn stage 2'
            model.Softmax('cls_score_2nd', 'cls_prob_2nd_2nd', engine='CUDNN')
            cls_prob_2nd_2nd = model.Softmax('cls_score_2nd', 'cls_prob_2nd_2nd', engine='CUDNN')
            model.FCShared(
                blobs_in[1],
                'cls_score_1st_2nd',
                dim,
                model.num_classes,
                weight='cls_score_1st_w',
                bias='cls_score_1st_b'
            )
            cls_prob_1st_2nd = model.Softmax('cls_score_1st_2nd', 'cls_prob_1st_2nd', engine='CUDNN')
            model.Sum([cls_prob_2nd_2nd, cls_prob_1st_2nd], 'cls_prob_2nd')
            model.Scale('cls_prob_2nd', 'cls_prob_2nd', scale=0.5)
        model.FC(
            blobs_in[0],
            'bbox_pred_2nd',
            dim,
            num_bbox_reg_classes * 4,
            weight_init=gauss_fill(0.001),
            bias_init=const_fill(0.0)
        )

    elif stage_num == 3:
        model.FC(
            blobs_in[0],
            'cls_score_3rd',
            dim,
            model.num_classes,
            weight_init=gauss_fill(0.01),
            bias_init=const_fill(0.0)
        )
        if not model.train:  # == if test
            # Only add softmax when testing; during training the softmax is combined
            # with the label cross entropy loss for numerical stability
            assert len(blobs_in) == 3, 'during inference, need fc2_2nd and fc2_1st_2nd as in put blobsin rcnn stage 3'
            model.Softmax('cls_score_3rd', 'cls_prob_3rd_3rd', engine='CUDNN')
            cls_prob_3rd_3rd = model.Softmax('cls_score_3rd', 'cls_prob_3rd_3rd', engine='CUDNN')

            model.FCShared(
                blobs_in[1],
                'cls_score_1st_3rd',
                dim,
                model.num_classes,
                weight='cls_score_1st_w',
                bias='cls_score_1st_b'
            )
            cls_prob_1st_3rd = model.Softmax('cls_score_1st_3rd', 'cls_prob_1st_3rd', engine='CUDNN')

            model.FCShared(
                blobs_in[2],
                'cls_score_2nd_3rd',
                dim,
                model.num_classes,
                weight='cls_score_2nd_w',
                bias='cls_score_2nd_b'
            )
            cls_prob_2nd_3rd = model.Softmax('cls_score_2nd_3rd', 'cls_prob_2nd_3rd', engine='CUDNN')

            model.Sum([cls_prob_1st_3rd, cls_prob_2nd_3rd, cls_prob_3rd_3rd], 'cls_prob_3rd')
            model.Scale('cls_prob_3rd', 'cls_prob_3rd', scale=0.33333333)
        model.FC(
            blobs_in[0],
            'bbox_pred_3rd',
            dim,
            num_bbox_reg_classes * 4,
            weight_init=gauss_fill(0.001),
            bias_init=const_fill(0.0)
        )
Exemple #12
0
def add_roi_cascade_2mlp_head(model, blob_in, dim_in, spatial_scale, stage_num):
    """Add cascade ReLU MLP with two hidden layers."""
    hidden_dim = cfg.FAST_RCNN.MLP_HEAD_DIM
    roi_size = cfg.FAST_RCNN.ROI_XFORM_RESOLUTION

    if stage_num == 1:
        roi_feat = model.RoIFeatureTransform(
            blob_in,
            'roi_feat_1st',
            blob_rois='rois_1st',
            method=cfg.FAST_RCNN.ROI_XFORM_METHOD,
            resolution=roi_size,
            sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO,
            spatial_scale=spatial_scale
        )
        model.FC(roi_feat, 'fc1' + '_1st', dim_in * roi_size * roi_size, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc1' + '_1st', 'fc1' + '_1st')
        model.FC('fc1' + '_1st', 'fc2' + '_1st', hidden_dim, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc2' + '_1st', 'fc2' + '_1st')
        return ['fc2' + '_1st'], hidden_dim

    elif stage_num == 2:
        roi_feat = model.RoIFeatureTransform(
            blob_in,
            'roi_feat_2nd',
            blob_rois='rois_2nd',
            method=cfg.FAST_RCNN.ROI_XFORM_METHOD,
            resolution=roi_size,
            sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO,
            spatial_scale=spatial_scale
        )
        model.FC(roi_feat, 'fc1' + '_2nd', dim_in * roi_size * roi_size, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc1' + '_2nd', 'fc1' + '_2nd')
        model.FC('fc1' + '_2nd', 'fc2' + '_2nd', hidden_dim, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc2' + '_2nd', 'fc2' + '_2nd')

        if not model.train:
            model.FCShared(roi_feat, 'fc1' + '_1st' + '_2nd', dim_in * roi_size * roi_size, hidden_dim, weight='fc1_1st_w', bias='fc1_1st_b')
            model.Relu('fc1' + '_1st' + '_2nd', 'fc1' + '_1st' + '_2nd')
            model.FCShared('fc1' + '_1st' + '_2nd', 'fc2' + '_1st' + '_2nd', hidden_dim, hidden_dim, weight='fc2_1st_w', bias='fc2_1st_b')
            model.Relu('fc2' + '_1st' + '_2nd', 'fc2' + '_1st' + '_2nd')
        return ['fc2' + '_2nd', 'fc2' + '_1st' + '_2nd'], hidden_dim

    elif stage_num == 3:
        roi_feat = model.RoIFeatureTransform(
            blob_in,
            'roi_feat_3rd',
            blob_rois='rois_3rd',
            method=cfg.FAST_RCNN.ROI_XFORM_METHOD,
            resolution=roi_size,
            sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO,
            spatial_scale=spatial_scale
        )
        model.FC(roi_feat, 'fc1' + '_3rd', dim_in * roi_size * roi_size, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc1' + '_3rd', 'fc1' + '_3rd')
        model.FC('fc1' + '_3rd', 'fc2' + '_3rd', hidden_dim, hidden_dim, weight_init=("MSRAFill", {}), bias_init=const_fill(0.0))
        model.Relu('fc2' + '_3rd', 'fc2' + '_3rd')

        if not model.train:
            model.FCShared(roi_feat, 'fc1' + '_1st' + '_3rd', dim_in * roi_size * roi_size, hidden_dim, weight='fc1_1st_w', bias='fc1_1st_b')
            model.Relu('fc1' + '_1st' + '_3rd', 'fc1' + '_1st' + '_3rd')
            model.FCShared('fc1' + '_1st' + '_3rd', 'fc2' + '_1st' + '_3rd', hidden_dim, hidden_dim, weight='fc2_1st_w', bias='fc2_1st_b')
            model.Relu('fc2' + '_1st' + '_3rd', 'fc2' + '_1st' + '_3rd')

            model.FCShared(roi_feat, 'fc1' + '_2nd' + '_3rd', dim_in * roi_size * roi_size, hidden_dim, weight='fc1_2nd_w', bias='fc1_2nd_b')
            model.Relu('fc1' + '_2nd' + '_3rd', 'fc1' + '_2nd' + '_3rd')
            model.FCShared('fc1' + '_2nd' + '_3rd', 'fc2' + '_2nd' + '_3rd', hidden_dim, hidden_dim, weight='fc2_2nd_w', bias='fc2_2nd_b')
            model.Relu('fc2' + '_2nd' + '_3rd', 'fc2' + '_2nd' + '_3rd')
        return ['fc2' + '_3rd', 'fc2' + '_1st' + '_2nd', 'fc2' + '_2nd' + '_3rd'], hidden_dim