Exemple #1
0
    def _specialize_clusters(cls, clusters, **kwargs):
        """
        Optimize Clusters for better runtime performance.
        """
        # To create temporaries
        counter = generator()
        template = lambda: "r%d" % counter()

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = Toposort().process(clusters)
        clusters = fuse(clusters)

        # Flop reduction via the DSE
        clusters = rewrite(clusters, template, **kwargs)

        # Lifting
        clusters = Lift().process(clusters)

        # Lifting may create fusion opportunities, which in turn may enable
        # further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters, template)
        clusters = scalarize(clusters, template)

        return clusters
Exemple #2
0
    def _specialize_clusters(cls, clusters, **kwargs):
        # TODO: this is currently identical to CPU64NoopOperator._specialize_clusters,
        # but it will have to change

        # To create temporaries
        counter = generator()
        template = lambda: "r%d" % counter()

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = Toposort().process(clusters)
        clusters = fuse(clusters)

        # Flop reduction via the DSE
        clusters = rewrite(clusters, template, **kwargs)

        # Lifting
        clusters = Lift().process(clusters)

        # Lifting may create fusion opportunities, which in turn may enable
        # further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters, template)
        clusters = scalarize(clusters, template)

        return clusters
Exemple #3
0
    def _specialize_clusters(cls, clusters, **kwargs):
        options = kwargs['options']
        platform = kwargs['platform']

        # To create temporaries
        counter = generator()
        template = lambda: "r%d" % counter()

        # Toposort+Fusion (the former to expose more fusion opportunities)
        clusters = Toposort().process(clusters)
        clusters = fuse(clusters)

        # Hoist and optimize Dimension-invariant sub-expressions
        clusters = cire(clusters, template, 'invariants', options, platform)
        clusters = Lift().process(clusters)

        # Reduce flops (potential arithmetic alterations)
        clusters = extract_increments(clusters, template)
        clusters = cire(clusters, template, 'sops', options, platform)
        clusters = factorize(clusters)
        clusters = optimize_pows(clusters)

        # Reduce flops (no arithmetic alterations)
        clusters = cse(clusters, template)

        # The previous passes may have created fusion opportunities, which in
        # turn may enable further optimizations
        clusters = fuse(clusters)
        clusters = eliminate_arrays(clusters, template)
        clusters = scalarize(clusters, template)

        # Blocking to improve data locality
        clusters = Blocking(options).process(clusters)

        return clusters