def saveweight(str, n): #save tntn = [] tntn = n.ni - 1, n.nh - 1, n.nh2 - 1, n.no txtx = [] txtx = n.wi, n.wo, n.wo2 tgtg = [] tgtg.append(tntn) tgtg.append(txtx) print 'save...' print tgtg print '...save' dewweight.dew_write_weight_file(str, tgtg)
def demoClassification(): # Teach network XOR function #pat = [ # [[0,0], [0]], # [[0,1], [1]], # [[1,0], [1]], # [[1,1], [0]] #] print "loading training.txt" pat = dewload.dew_load_train_file("./txt/training.txt") print "pat = " print pat pat2 = dewnormal.dew_normal_big_set_for_ol(pat) print "paterrn from Training.txt" print pat2 # create a network with two input, two hidden, and one output nodes n = NN(67, 38, 8, regression = False) #load and retrain #n.wi, n.wo = loadweight("./txt/weight_1.txt",n) # train it with some patterns then test it. #print pat2 n.train(pat2, 100, 0.1, 0.2) #n.test(pat2, verbose = True) n.weights() #save txtx = [] txtx = n.wi , n.wo dewweight.dew_write_weight_file("./txt/weight_1.txt",txtx) #predict = [ # [[1,0],[1]] # ] # n.test(predict, verbose = True) try: plot(inputs, outputs, actual) #plot(pat, pat, pat) print "Press a key to quit." value = raw_input() except: print "Must have matplotlib to plot."
def saveweight(str,n): #save txtx = [] txtx = n.wi , n.wo dewweight.dew_write_weight_file(str,txtx)