def test_forward3(self): N, C = 20, 10 x, gamma, beta, mean, var = get_params(N, C) cy = CF.fixed_batch_normalization(x, gamma, beta, mean, var) with dezero.test_mode(): y = F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(array_allclose(y.data, cy.data))
def test_forward1(self): N, C = 8, 1 x, gamma, beta, mean, var = get_params(N, C) cy = CF.batch_normalization(x, gamma, beta, running_mean=mean, running_var=var) y = F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(array_allclose(y.data, cy.data))
def __call__(self, x): if self.avg_mean.data is None: self._init_params(x) return F.batch_nrom(x, self.gamma, self.beta, self.avg_mean.data, self.avg_var.data)
def test_forward4(self): N, C, H, W = 20, 10, 5, 5 x, gamma, beta, mean, var = get_params(N, C, H, W) cy = CF.batch_normalization(x, gamma, beta) y = F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(array_allclose(y.data, cy.data))
def test_type1(self): N, C = 8, 3 x, gamma, beta, mean, var = get_params(N, C) y = F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(y.data.dtype == np.float32)
def test_backward6(self): params = 10, 20, 5, 5 x, gamma, beta, mean, var = get_params(*params, dtype=np.float64) f = lambda beta: F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(gradient_check(f, beta))
def test_backward3(self): N, C = 8, 3 x, gamma, beta, mean, var = get_params(N, C, dtype=np.float64) f = lambda beta: F.batch_nrom(x, gamma, beta, mean, var) self.assertTrue(gradient_check(f, beta))