Exemple #1
0
 def forward(self, x):
     if self.h is None:
         h_new = F.tanh(self.x2h(x))
     else:
         h_new = F.tanh(self.x2h(x) + self.h2h(self.h))
     self.h = h_new
     return h_new
 def __call__(self, x):
     if self.h is None:
         h_new = F.tanh(self.x2h(x))
     else:
         h_new = F.tanh(self.x2h(x) + self.h2h(self.h))
     self.h = h_new
     return h_new
    def __call__(self, x):
        if self.h is None:
            N, D = x.shape
            H, H = self.h2f.W.shape
            self.h = np.zeros((N, H), np.float32)
            self.c = np.zeros((N, H), np.float32)

        f = F.sigmoid(self.x2f(x) + self.h2f(self.h))
        i = F.sigmoid(self.x2i(x) + self.h2i(self.h))
        o = F.sigmoid(self.x2o(x) + self.h2o(self.h))
        u = F.tanh(self.x2u(x) + self.h2u(self.h))

        c = (f * self.c) + (i * u)
        h = o * F.tanh(c)

        self.h, self.c = h, c
        return h
 def test_tanh_backward_twice(self):
     x = Variable(np.array(1.0))
     y = F.tanh(x)
     y.backward(create_graph=True)
     gx = x.grad
     x.cleargrad()
     gx.backward(create_graph=False)
     result = x.grad.data
     assert np.allclose(result, -0.63970001)
Exemple #5
0
    def forward(self, x):
        if self.h is None:
            f = F.sigmoid(self.x2f(x))
            i = F.sigmoid(self.x2i(x))
            o = F.sigmoid(self.x2o(x))
            u = F.tanh(self.x2u(x))
        else:
            f = F.sigmoid(self.x2f(x) + self.h2f(self.h))
            i = F.sigmoid(self.x2i(x) + self.h2i(self.h))
            o = F.sigmoid(self.x2o(x) + self.h2o(self.h))
            u = F.tanh(self.x2u(x) + self.h2u(self.h))

        if self.c is None:
            c_new = (i * u)
        else:
            c_new = (f * self.c) + (i * u)

        h_new = o * F.tanh(c_new)
        self.h, self.c = h_new, c_new
        return h_new
    def __call__(self, x):
        if self.h is None:
            f = F.sigmoid(self.x2f(x))
            i = F.sigmoid(self.x2i(x))
            o = F.sigmoid(self.x2o(x))
            u = F.tanh(self.x2u(x))
        else:
            f = F.sigmoid(self.x2f(x) + self.h2f(self.h))
            i = F.sigmoid(self.x2i(x) + self.h2i(self.h))
            o = F.sigmoid(self.x2o(x) + self.h2o(self.h))
            u = F.tanh(self.x2u(x) + self.h2u(self.h))

        if self.c is None:
            c = (i * u)
        else:
            c = (f * self.c) + (i * u)

        h = o * F.tanh(c)

        self.h, self.c = h, c
        return h
    def test_tanh(self):
        x = Variable(np.array(1.0))
        y = F.tanh(x)
        x.name = 'x'
        y.name = 'y'
        y.backward(create_graph=True)

        iters = 0

        for i in range(iters):
            gx = x.grad
            x.cleargrad()
            gx.backward(create_graph=True)

        gx = x.grad
        gx.name = 'gx' + str(iters + 1)
        txt = get_dot_graph(gx)
        with open('test.dot', 'w') as f:
            f.write(txt)
Exemple #8
0
if '__file__' in globals():
    import os
    import sys
    sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

import numpy as np
from dezero.utils import plot_dot_graph
from dezero import Variable
import dezero.functions as F

x = Variable(np.array(np.array(1.0)))
y = F.tanh(x)
x.name = 'x'
y.name = 'y'
y.backward(create_graph=True)

iters = 5

for i in range(iters):
    gx = x.grad
    x.cleargrad()
    gx.backward(create_graph=True)

gx = x.grad
gx.name = 'gx' + str(iters + 1)
plot_dot_graph(gx, verbose=False, to_file='../save/tanh.png')
import numpy as np
from dezero import Variable
from dezero.utils import plot_dot_graph
import dezero.functions as f

iterss = 0

if __name__ == '__main__':

    x = Variable(np.array(1))
    y = f.tanh(x)
    x.name = 'x'
    y.name = 'y'
    y.backward(create_graph=True)

    for iters in [0, 1, 2, 3, 4, 5, 6]:
        for i in range(iters):
            gx: Variable = x.grad
            x.clear_grad()
            gx.backward(create_graph=True)

        gx: Variable = x.grad
        gx.name = f'gx{iters + 1}'
        plot_dot_graph(gx, verbose=False, to_file=f'tanh_diff_{iters + 1}.png')
 def test_backward(self):
     x = Variable(np.array(0.5))
     y = tanh(x)
     y.backward()
     self.assertAlmostEqual(x.grad.data, np.array(0.7864477330213905))
 def test_forward(self):
     x = Variable(np.array(0.5))
     y = tanh(x)
     self.assertAlmostEqual(y.data, np.array(0.4621171572))
 def test_tanh_backward_once(self):
     x = Variable(np.array(np.pi / 4))
     y = F.tanh(x)
     y.backward()
     result = x.grad.data
     assert np.allclose(result, 0.56993396)
 def test_tanh_forward(self):
     x = Variable(np.array(np.pi / 4))
     y = F.tanh(x)
     assert np.allclose(y.data, 0.6557942)