Exemple #1
0
def gen_onet_data(data_dir,
                  anno_file,
                  pnet_model_file,
                  rnet_model_file,
                  prefix_path='',
                  use_cuda=True,
                  vis=False):

    pnet, rnet, _ = create_mtcnn_net(p_model_path=pnet_model_file,
                                     r_model_path=rnet_model_file,
                                     use_cuda=use_cuda)
    mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, min_face_size=12)

    imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path)
    imdb = imagedb.load_imdb()
    image_reader = TestImageLoader(imdb, 1, False)

    all_boxes = list()
    batch_idx = 0

    for databatch in image_reader:
        if batch_idx % 100 == 0:
            print("%d images done" % batch_idx)
        im = databatch

        t = time.time()

        p_boxes, p_boxes_align = mtcnn_detector.detect_pnet(im=im)

        boxes, boxes_align = mtcnn_detector.detect_rnet(im=im,
                                                        dets=p_boxes_align)

        if boxes_align is None:
            all_boxes.append(np.array([]))
            batch_idx += 1
            continue
        if vis:
            rgb_im = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB)
            vision.vis_two(rgb_im, boxes, boxes_align)

        t1 = time.time() - t
        t = time.time()
        all_boxes.append(boxes_align)
        batch_idx += 1

    save_path = config.MODEL_STORE_DIR

    if not os.path.exists(save_path):
        os.mkdir(save_path)

    save_file = os.path.join(save_path, "detections_%d.pkl" % int(time.time()))
    with open(save_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)

    gen_onet_sample_data(data_dir, anno_file, save_file, prefix_path)
Exemple #2
0
 def __init__(self):
     import os
     before_folder = os.path.abspath('.')
     os.chdir(
         os.path.join('/'.join(Face.__module__.split('.')[:-1]), 'DFace'))
     from dface.core.detect import create_mtcnn_net, MtcnnDetector
     pnet, rnet, onet = create_mtcnn_net(
         p_model_path="./model_store/pnet_epoch.pt",
         r_model_path="./model_store/rnet_epoch.pt",
         o_model_path="./model_store/onet_epoch.pt",
         use_cuda=False)
     self.detector = MtcnnDetector(
         pnet=pnet, rnet=rnet, onet=onet, min_face_size=64)
     os.chdir(before_folder)
Exemple #3
0
class Face():
    def __init__(self):
        import os
        before_folder = os.path.abspath('.')
        os.chdir(
            os.path.join('/'.join(Face.__module__.split('.')[:-1]), 'DFace'))
        from dface.core.detect import create_mtcnn_net, MtcnnDetector
        pnet, rnet, onet = create_mtcnn_net(
            p_model_path="./model_store/pnet_epoch.pt",
            r_model_path="./model_store/rnet_epoch.pt",
            o_model_path="./model_store/onet_epoch.pt",
            use_cuda=False)
        self.detector = MtcnnDetector(
            pnet=pnet, rnet=rnet, onet=onet, min_face_size=64)
        os.chdir(before_folder)

    def get_face_from_file(self, org_file, margin=5.):
        import imageio
        img = imageio.imread(org_file, pilmode="RGB")
        try:
            bbox = map(int,
                       self.detector.detect_face(img[:, :, ::-1])[0][0][:-1])
            bbox = [max(0, i) for i in bbox]

            def marginP(x, y):
                return int(x + y / margin)

            def marginM(x, y):
                return int(x - y / margin)

            bbox = [
                marginM(bbox[0], bbox[2] - bbox[0]),
                marginM(bbox[1], bbox[3] - bbox[1]),
                marginP(bbox[2], bbox[2] - bbox[0]),
                marginP(bbox[3], bbox[3] - bbox[1])
            ]
            bbox = [max(0, i) for i in bbox]
            img_face = img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
            return img_face, True
        except IndexError:
            img_face = img
            return img_face, False

    def get_all_faces_from_file(self, org_file, margin=5.):
        import imageio
        img = imageio.imread(org_file, pilmode="RGB")
        bboxes = [
            _bbox[:-1]
            for _bbox in self.detector.detect_face(img[:, :, ::-1])[0]
        ]
        good_bboxes = []
        for n in range(len(bboxes)):
            try:
                bbox = map(int, bboxes[n])
                bbox = [max(0, i) for i in bbox]

                def marginP(x, y):
                    return int(x + y / margin)

                def marginM(x, y):
                    return int(x - y / margin)

                bbox = [
                    marginM(bbox[0], bbox[2] - bbox[0]),
                    marginM(bbox[1], bbox[3] - bbox[1]),
                    marginP(bbox[2], bbox[2] - bbox[0]),
                    marginP(bbox[3], bbox[3] - bbox[1])
                ]
                bbox = [max(0, i) for i in bbox]
                # img_face = img[bbox[1]:bbox[3], bbox[0]:bbox[2]]
                good_bboxes.append(bbox)
            except IndexError:
                continue
        return good_bboxes

    def get_face_and_save(self, org_file, face_file):
        import imageio
        import os
        if not os.path.isfile(face_file):
            face, success = self.get_face_from_file(org_file)
            imageio.imwrite(face_file, face)
            return success
        else:
            return False
Exemple #4
0
import cv2
from dface.core.detect import create_mtcnn_net, MtcnnDetector
import dface.core.vision as vision
import numpy as np
import torch
if __name__ == '__main__':
    pnet, rnet, onet = create_mtcnn_net(
        p_model_path="./model_store/pnet_epoch.pt",
        r_model_path="./model_store/rnet_epoch.pt",
        o_model_path="./model_store/onet_epoch.pt",
        use_cuda=True)
    mtcnn_detector = MtcnnDetector(pnet=pnet,
                                   rnet=rnet,
                                   onet=onet,
                                   min_face_size=24)

    img = cv2.imread("./test.jpg")
    img_bg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    with torch.no_grad():
        bboxs, landmarks = mtcnn_detector.detect_face(img)

    vision.vis_face(img_bg, bboxs, landmarks)
Exemple #5
0
def face_detection():
    global face_out
    global ready
    #face detection model
    p_model_path = "./weights/pnet_epoch.pt"
    r_model_path = "./weights/rnet_epoch.pt"
    o_model_path = "./weights/onet_epoch.pt"
    pnet, rnet, onet = create_mtcnn_net(p_model_path,
                                        r_model_path,
                                        o_model_path,
                                        use_cuda=True)
    mtcnn_detector = MtcnnDetector(pnet=pnet,
                                   rnet=rnet,
                                   onet=onet,
                                   min_face_size=24)
    assert os.path.exists(p_model_path), "pnet Model Path is not exist!"
    assert os.path.exists(r_model_path), "rnet Model Path is not exist!"
    assert os.path.exists(o_model_path), "onet Model Path is not exist!"

    #face classification model
    cls_model_path = './weights/cnet_final.pth'
    assert os.path.exists(cls_model_path), "Cls Model Path is not exist!"
    net = CNet()
    net.load_state_dict(torch.load(cls_model_path))
    transform = ToTensor()

    #get face data (used for training)
    #save_dir='./data/null/'
    #if not os.path.isdir(save_dir):
    #    os.mkdir(save_dir)

    #打开摄像头
    capture = cv2.VideoCapture(0)

    i = 0
    while True:
        ready = True
        print(ready)
        timer1 = time.time()
        ret, frame = capture.read()
        faces, _ = mtcnn_detector.detect_face(frame)

        for (top_x, top_y, bottom_x, bottom_y, s) in faces:
            i = i + 1
            top_x = int(top_x)
            top_y = int(top_y)
            bottom_x = int(bottom_x)
            bottom_y = int(bottom_y)
            #矩形标记
            cv2.rectangle(frame, (int(top_x), int(top_y)),
                          (int(bottom_x), int(bottom_y)), (0, 255, 0), 2)
            frame_save = frame[top_y:bottom_y, top_x:bottom_x, :]
            try:
                #cv2.imwrite(save_dir+str(i)+'.jpg',frame_save)
                cls_input = transform(cv2.resize(frame_save,
                                                 (28, 28))).unsqueeze(0)
            except:
                continue
            out = net(cls_input)
            cls = torch.argmax(out, dim=1)
            print((top_x, top_y, bottom_x, bottom_y), '\t', cls.item())
            face_out = cls.item()
        timer2 = time.time()
        #print(timer2-timer1)
        #显示图片
        cv2.imshow("faces in video", frame)
        #暂停窗口
        if cv2.waitKey(5) & 0xFF == ord('q'):
            break
    #释放资源
    capture.release()
    #销毁窗口
    cv2.destroyAllWindows()
Exemple #6
0
    capture.release()
    #销毁窗口
    cv2.destroyAllWindows()


if __name__ == "__main__":
    #face detection model
    p_model_path = "./weights/pnet_epoch.pt"
    r_model_path = "./weights/rnet_epoch.pt"
    o_model_path = "./weights/onet_epoch.pt"
    pnet, rnet, onet = create_mtcnn_net(p_model_path,
                                        r_model_path,
                                        o_model_path,
                                        use_cuda=True)
    mtcnn_detector = MtcnnDetector(pnet=pnet,
                                   rnet=rnet,
                                   onet=onet,
                                   min_face_size=24)
    assert os.path.exists(p_model_path), "pnet Model Path is not exist!"
    assert os.path.exists(r_model_path), "rnet Model Path is not exist!"
    assert os.path.exists(o_model_path), "onet Model Path is not exist!"

    #face classification model
    cls_model_path = './weights/cnet_final.pth'
    assert os.path.exists(cls_model_path), "Cls Model Path is not exist!"
    net = CNet()
    net.load_state_dict(torch.load(cls_model_path))
    transform = ToTensor()

    #get face data (used for training)
    #save_dir='./data/null/'
    #if not os.path.isdir(save_dir):