Exemple #1
0
 def setUpClass(cls):
     cls.model_dir = tempfile.TemporaryDirectory()
     cls.feature1 = Feature_1()
     cls.feature2 = Feature_2()
     cls.features = Features(cls.feature1, cls.feature2)
     cls.model = DNNRegressionModel(
         DNNRegressionModelConfig(
             directory=cls.model_dir.name,
             steps=1000,
             epochs=40,
             hidden=[50, 20, 10],
             predict=DefFeature("TARGET", float, 1),
             features=cls.features,
         ))
     # Generating data f(x1,x2) = 2*x1 + 3*x2
     _n_data = 2000
     _temp_data = np.random.rand(2, _n_data)
     cls.repos = [
         Repo(
             "x" + str(random.random()),
             data={
                 "features": {
                     cls.feature1.NAME: float(_temp_data[0][i]),
                     cls.feature2.NAME: float(_temp_data[1][i]),
                     "TARGET": 2 * _temp_data[0][i] + 3 * _temp_data[1][i],
                 }
             },
         ) for i in range(0, _n_data)
     ]
     cls.sources = Sources(MemorySource(
         MemorySourceConfig(repos=cls.repos)))
Exemple #2
0
from dffml import CSVSource, Features, DefFeature
from dffml.noasync import train, accuracy, predict
from dffml_model_tensorflow.dnnr import DNNRegressionModel

model = DNNRegressionModel(
    features=Features(DefFeature("Feature1", float, 1),
                      DefFeature("Feature2", float, 1)),
    predict=DefFeature("TARGET", float, 1),
    epochs=300,
    steps=2000,
    hidden=[8, 16, 8],
)

# Train the model
train(model, "train.csv")

# Assess accuracy (alternate way of specifying data source)
print("Accuracy:", accuracy(model, CSVSource(filename="test.csv")))

# Make prediction
for i, features, prediction in predict(model, {
        "Feature1": 0.21,
        "Feature2": 0.18,
        "TARGET": 0.84
}):
    features["TARGET"] = prediction["TARGET"]["value"]
    print(features)
Exemple #3
0
from dffml import CSVSource, Features, Feature
from dffml.noasync import train, accuracy, predict
from dffml_model_tensorflow.dnnr import DNNRegressionModel

model = DNNRegressionModel(
    features=Features(Feature("Feature1", float, 1),
                      Feature("Feature2", float, 1)),
    predict=Feature("TARGET", float, 1),
    epochs=300,
    steps=2000,
    hidden=[8, 16, 8],
    directory="tempdir",
)

# Train the model
train(model, "train.csv")

# Assess accuracy (alternate way of specifying data source)
print("Accuracy:", accuracy(model, CSVSource(filename="test.csv")))

# Make prediction
for i, features, prediction in predict(model, {
        "Feature1": 0.21,
        "Feature2": 0.18,
        "TARGET": 0.84
}):
    features["TARGET"] = prediction["TARGET"]["value"]
    print(features)
Exemple #4
0
from dffml_model_tensorflow.dnnr import (
    DNNRegressionModel,
    DNNRegressionModelConfig,
)

training_data = CSVSource(
    CSVSourceConfig(filename="training.csv", readonly=True))
test_data = CSVSource(CSVSourceConfig(filename="test.csv", readonly=True))
predict_data = CSVSource(CSVSourceConfig(filename="predict.csv",
                                         readonly=True))

model = DNNRegressionModel(
    DNNRegressionModelConfig(
        features=Features(
            DefFeature("Years", int, 1),
            DefFeature("Expertise", int, 1),
            DefFeature("Trust", float, 1),
        ),
        predict="Salary",
    ))

Train(model=model, sources=[training_data])()

accuracy = Accuracy(model=model, sources=[test_data])()

row0, row1 = PredictAll(model=model, sources=[predict_data])()

print("Accuracy", accuracy)
print(row0)
print(row1)