Exemple #1
0
    def __init__(self, name, net, has_subbehaviors=False):
        """Constructor
        
        Parameters:
        name --- A string that describes the behavior.
        net --- The nxsdk network object required to create the neurons.
        has_subbehaviors --- Set this flag to true if this behavior does not do any direct work but only connects to a set of subbehaviors.
        """
        self.name = name
        self.net = net
        self.has_subbehaviors = has_subbehaviors

        # activated and sustained by input from task (or higher-level intention node), turns off without that input
        self.node_prior_intention = Node("Prior Intention", net)
        # activated by input from prior intention node, turns off without that input
        self.node_intention = Node("Intention", net)

        # a dictionary for CoS memory nodes
        self.nodes_cos_memory = {}
        # a dictionary for CoS nodes
        self.nodes_cos = {}
        # a dictionary for precondition nodes
        self.preconditions = {}

        # the prior intention node activates the intention node
        connect(self.node_prior_intention, self.node_intention, 1.1)

        # if this behavior only has subbehaviors, add a single CoS signal
        # it will later be fed from the CoS signals of all subbehaviors
        if (self.has_subbehaviors):
            single_cos_name = "done"
            self.add_cos(single_cos_name)
            self.single_node_cos = self.nodes_cos[single_cos_name]
Exemple #2
0
    def add_cos(self, cos_name, cos_input=None):
        """Adds a condition-of-satisfaction (CoS) to the behavior.
        
        Parameters:
        name --- A string that describes the CoS.
        cos_input --- The input that provides the CoS signal. Leave empty if you want to add it manually later.
        """
        # activated by input from BOTH intention node and "sensory" input, turns off without either
        cos_node = Node(cos_name, self.net)
        self.nodes_cos[cos_name] = cos_node
        # activated by input from BOTH task and cos node, remains on without cos input, turns off without task input
        cos_memory_node = Node(cos_name + " Memory",
                               self.net,
                               self_excitation=0.3)
        self.nodes_cos_memory[cos_name] = cos_memory_node

        int_cos_weight = 0.6 if (not self.has_subbehaviors) else 1.0
        connect(self.node_intention, cos_node, int_cos_weight)
        connect(cos_node, cos_memory_node, 0.3)
        connect(cos_memory_node, self.node_intention, -1.0)

        if (cos_input != None):
            connect(cos_input, cos_node, 0.6)
Exemple #3
0
 def add_precondition(self,
                      name,
                      precondition_behaviors,
                      cos_names,
                      task_input,
                      logical_or=False,
                      register_groups=None):
     """Connects a list of other behaviors in such a way that they are on the next lower hierarchical level
     with respect to the current behavior.
     
     Parameters:
     name --- A string description of the precondition.
     precondition_behaviors --- A list of behaviors whose successful execution are a precondition to start executing this behavior.
     By default, all precondition behaviors have to be successfully executed to start executing this behavior.
     cos_names --- A list of lists of CoS names, e.g., [["CoS 1, first behavior", "CoS 2, first behavior"], ["CoS 1, second behavior"]]
     task_input --- Input activating the precondition nodes.
     logical_or --- By setting this flag to true, this behavior requires only one of the preconditions to start execution.
     """
     precondition_node = Node(name, self.net)
     self.preconditions[name] = precondition_node
     if (register_groups != None):
         register_groups[name] = precondition_node.neurons
     connect(precondition_node, self.node_intention, -1.1)
     #precondition_node.visualization = Node.PreconditionVisualization()
     #precondition_node.visualization.set_target_behavior(self.name)
     #precondition_node.visualization.task_node = task_input
     for i in range(len(precondition_behaviors)):
         for j in range(len(cos_names[i])):
             weight = -1.1
             if (not logical_or):
                 weight = weight / len(precondition_behaviors)
             connect(
                 precondition_behaviors[i].nodes_cos_memory[
                     cos_names[i][j]], precondition_node, weight)
             #precondition_node.visualization.add_source_cos(precondition_behaviors[i].name, cos_names[i][j])
     connect(task_input, precondition_node, 1.1)
Exemple #4
0
from dft_loihi.inputs.simulated_input import HomogeneousPiecewiseStaticInput
from dft_loihi.dft.util import connect

# set up the network
net = nxsdk.net.net.NxNet()

neurons_per_node = 1
simulated_input = HomogeneousPiecewiseStaticInput("input", net,
                                                  neurons_per_node)
simulated_input.add_spike_rate(0, 100)
simulated_input.add_spike_rate(500, 100)
simulated_input.add_spike_rate(2000, 100)
simulated_input.add_spike_rate(500, 100)
simulated_input.add_spike_rate(0.0, 100)
simulated_input.create()

node = Node("node", net, self_excitation=1.1)

connect(simulated_input, node, 1.1)

# run the network
time_steps = 500
net.run(time_steps)
net.disconnect()

# plot results
plotter = Plotter()
plotter.add_input_plot(simulated_input)
plotter.add_node_plot(node)
plotter.plot()
    def draw_behavior(x, y, behavior):
        offset_x_neurons = 2
        offset_y_neurons = 2

        # behavior label
        offset_x_center = (len(behavior.nodes_cos) * offset_x_neurons) / 2.
        matplotlib.pyplot.text(x + offset_x_center,
                               y - 2 * offset_y_neurons,
                               behavior.name.replace("state_machine.",
                                                     "").replace("_", " "),
                               ha='center',
                               va='bottom',
                               transform=ax.transData)

        # intention label
        #matplotlib.pyplot.text(x,
        #                       y + offset_y_neurons,
        #                       "start",
        #                       ha='center',
        #                       va='bottom',
        #                       transform=ax.transData)

        # prior intention
        behavior.node_prior_intention.visualization = Node.Visualization(
            x, y, False)
        behavior.node_prior_intention.visualization.draw()

        # intention
        behavior.node_intention.visualization = Node.Visualization(
            x, y - offset_y_neurons, False)
        behavior.node_intention.visualization.draw()

        draw_axon(behavior.node_prior_intention.visualization,
                  behavior.node_intention.visualization)

        for j, key in enumerate(behavior.nodes_cos.keys()):
            x += offset_x_neurons

            # cos label
            #matplotlib.pyplot.text(x,
            #                       y + offset_y_neurons,
            #                       key,
            #                       ha='center',
            #                       va='bottom',
            #                       transform=ax.transData)

            # cos memory
            node_cos_memory = behavior.nodes_cos_memory[key]
            node_cos_memory.visualization = Node.Visualization(x, y, False)
            node_cos_memory.visualization.draw()
            # cos
            node_cos = behavior.nodes_cos[key]
            node_cos.visualization = Node.Visualization(
                x, y - offset_y_neurons, False)
            node_cos.visualization.draw()

            curved = True if (j > 0) else False
            draw_axon(behavior.node_intention.visualization,
                      node_cos.visualization,
                      curved=curved)
            draw_axon(node_cos_memory.visualization,
                      behavior.node_intention.visualization,
                      inhibitory=True)
            draw_axon(node_cos.visualization, node_cos_memory.visualization)

        return x
    def __init__(self, net):

        self.net = net

        # return values
        self.probed_groups = {
        }  # a dictionary of all compartments that produce output for YARP
        self.out_groups = {
        }  # a dictionary of all compartments that produce output to other networks on Loihi

        self.input_from_yarp = {
        }  # a dictionary of all compartments that receive input from YARP
        self.input_from_loihi = {
        }  # a dictionary of all compartments that receive input from other networks on Loihi

        self.behavior_dictionary = {}

        self.groups = {}  # a dictionary of all the compartment groups

        behavior_look = self.create_behavior("look",
                                             output=self.probed_groups,
                                             has_subbehaviors=True)

        behavior_look_at_object = self.create_behavior(
            "state_machine.look_at_object",
            cos_names=["done"],
            output=self.probed_groups,
            input=self.input_from_yarp)

        behavior_recognize_object = self.create_behavior(
            "state_machine.recognize_object",
            cos_names=["known", "unknown"],
            output=self.probed_groups,
            input=self.input_from_loihi)

        behavior_learn_new_object = self.create_behavior(
            "state_machine.learn_new_object",
            cos_names=["done"],
            output=self.probed_groups,
            input=self.input_from_yarp)

        behavior_dummy = self.create_behavior("state_machine.dummy",
                                              cos_names=["done"],
                                              output=self.probed_groups,
                                              input=self.input_from_yarp)
        # make this dummy behavior instantly create its own CoS signal
        connect(behavior_dummy.node_intention,
                behavior_dummy.nodes_cos["done"], 1.1)

        behavior_look.add_subbehaviors(
            [behavior_look_at_object, behavior_recognize_object])
        behavior_look.add_subbehaviors(
            [behavior_learn_new_object, behavior_dummy], logical_or=True)

        behavior_recognize_object.add_precondition(
            "prec.look_at_object:recognize_object", [behavior_look_at_object],
            [["done"]],
            behavior_look.node_intention,
            register_groups=self.groups)

        self.probed_groups[
            "state_machine.recognize_object.prec.look_at_object"] = behavior_recognize_object.preconditions[
                "prec.look_at_object:recognize_object"]

        behavior_dummy.add_precondition("prec.recognize_object:dummy",
                                        [behavior_recognize_object],
                                        [["known"]],
                                        behavior_look.node_intention,
                                        register_groups=self.groups)

        self.probed_groups[
            "state_machine.dummy.prec.recognize_object"] = behavior_dummy.preconditions[
                "prec.recognize_object:dummy"]

        behavior_learn_new_object.add_precondition(
            "prec.recognize_object:learn_new_object",
            [behavior_recognize_object], [["unknown"]],
            behavior_look.node_intention,
            register_groups=self.groups)

        self.probed_groups[
            "state_machine.learn_new_object.prec.recognize_object"] = behavior_learn_new_object.preconditions[
                "prec.recognize_object:learn_new_object"]

        behavior_query = self.create_behavior("query",
                                              output=self.probed_groups,
                                              has_subbehaviors=True)

        behavior_query_memory = self.create_behavior(
            "state_machine.query_memory",
            cos_names=["done"],
            output=self.probed_groups,
            input=self.input_from_yarp)

        behavior_query.add_subbehaviors([behavior_query_memory])

        query_behavior = False

        look_bias = 100
        query_bias = 0
        if (query_behavior):
            look_bias = 0
            query_bias = 100

        # top node that activates everything if it receives input
        node_look_name = "Node look"
        node_look = Node(node_look_name, net, biasMant=look_bias, biasExp=7)
        self.groups[node_look_name] = node_look
        behavior_look.add_boost(node_look)
        connect(behavior_look.nodes_cos_memory["done"], node_look, -1.5)

        node_query_name = "Node query"
        node_query = Node(node_query_name, net, biasMant=query_bias, biasExp=7)
        self.groups[node_query_name] = node_query
        behavior_query.add_boost(node_query)
        connect(behavior_query.nodes_cos_memory["done"], node_query, -1.5)
Exemple #7
0
# set up the network
net = nxsdk.net.net.NxNet()

neurons_per_node = 1
homogeneous_input = HomogeneousPiecewiseStaticInput("input to node",
                                                    net,
                                                    shape=neurons_per_node)
homogeneous_input.add_spike_rate(0, 200)
homogeneous_input.add_spike_rate(1000, 200)
homogeneous_input.add_spike_rate(0, 100)
homogeneous_input.create()

node = Node("node",
            net,
            number_of_neurons=neurons_per_node,
            tau_voltage=2,
            tau_current=10,
            self_excitation=0.08)

connect(homogeneous_input, node, 0.5, mask="one-to-one")

field_domain = [-5, 5]
field_shape = 15
gauss_input = GaussPiecewiseStaticInput("input to field",
                                        net,
                                        domain=field_domain,
                                        shape=field_shape)
gauss_input.add_spike_rate(0, 2.5, 1.5, 100)
gauss_input.add_spike_rate(800, 2.5, 1.5, 300)
gauss_input.add_spike_rate(0, 2.5, 1.5, 100)
gauss_input.create()
Exemple #8
0
from dft_loihi.inputs.simulated_input import HomogeneousPiecewiseStaticInput
from dft_loihi.dft.util import connect

# set up the network
net = nxsdk.net.net.NxNet()

neurons_per_node = 1
simulated_input = HomogeneousPiecewiseStaticInput("input", net,
                                                  neurons_per_node)
simulated_input.add_spike_rate(0, 100)
simulated_input.add_spike_rate(500, 100)
simulated_input.add_spike_rate(2000, 100)
simulated_input.add_spike_rate(500, 100)
simulated_input.add_spike_rate(0.0, 100)
simulated_input.create()

node = Node("node", net)

connect(simulated_input, node, 1.1)

# run the network
time_steps = 500
net.run(time_steps)
net.disconnect()

# plot results
plotter = Plotter()
plotter.add_input_plot(simulated_input)
plotter.add_node_plot(node)
plotter.plot()