Exemple #1
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 1,
     max_iter: int = 20,
     max_eval: Optional[int] = None,
     tolerance_grad: float = 1e-07,
     tolerance_change: float = 1e-09,
     history_size: int = 100,
     line_search_fn: Optional[str] = None,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         max_iter,
         max_eval,
         tolerance_grad,
         tolerance_change,
         history_size,
         line_search_fn,
     )
     self.param_groups_names = list(param_groups.keys())
Exemple #2
0
 def __init__(
         self,
         model_params: List[Tuple[str, torch.nn.Parameter]],
         param_groups: Optional[Union[Dict[str, ParamGroup],
                                      List[ParamGroup]]] = None,
         lr: float = 0.01,
         etas: Tuple[float, float] = (0.5, 1.2),
         step_sizes: Tuple[float, float] = (1e-06, 50),
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(make_params_groups(model_params, param_groups), lr,
                      etas, step_sizes)
     self.param_groups_names = list(param_groups.keys())
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     alpha: float = 0.01,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         {"alpha": alpha},
         list(param_groups.keys()),
     )
Exemple #4
0
    def apply(self, parameters: List[Tuple[str, torch.nn.Parameter]]):
        param_groups = make_params_groups(parameters, self.initializers,
                                          self.exclude_regexes)
        if isinstance(param_groups[0], torch.nn.Parameter):
            param_groups = [{"params": param_groups}]
        param_groups = check_param_groups(param_groups)

        for param_group in param_groups:
            params = param_group["params"]
            initializer = param_group.get("init", None)
            if initializer:
                assert isinstance(initializer, Callable)
                initializer(params)
Exemple #5
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 1.0,
     rho: float = 0.9,
     eps: float = 1e-06,
     weight_decay: float = 0,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(make_params_groups(model_params, param_groups), lr,
                      rho, eps, weight_decay)
     self.param_groups_names = list(param_groups.keys())
Exemple #6
0
 def __init__(
         self,
         model_params: List[Tuple[str, torch.nn.Parameter]],
         param_groups: Optional[Union[Dict[str, ParamGroup],
                                      List[ParamGroup]]] = None,
         lr: float = 0.001,
         betas: Tuple[float, float] = (0.9, 0.999),
         eps: float = 1e-08,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         betas,
         eps,
     )
     self.param_groups_names = list(param_groups.keys())
Exemple #7
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 0.01,
     lr_decay: float = 0,
     weight_decay: float = 0,
     initial_accumulator_value: float = 0,
     eps: float = 1e-10,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         lr_decay,
         weight_decay,
         initial_accumulator_value,
         eps,
     )
     self.param_groups_names = list(param_groups.keys())
Exemple #8
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 0.001,
     momentum: float = 0,
     dampening: float = 0,
     weight_decay: float = 0,
     nesterov: bool = False,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         momentum,
         dampening,
         weight_decay,
         nesterov,
     )
     self.param_groups_names = list(param_groups.keys())
Exemple #9
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 0.01,
     lambd: float = 0.0001,
     alpha: float = 0.75,
     t0: float = 1000000.0,
     weight_decay: float = 0,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         lambd,
         alpha,
         t0,
         weight_decay,
     )
     self.param_groups_names = list(param_groups.keys())
Exemple #10
0
 def __init__(
     self,
     model_params: List[Tuple[str, torch.nn.Parameter]],
     param_groups: Optional[Union[Dict[str, ParamGroup],
                                  List[ParamGroup]]] = None,
     lr: float = 0.01,
     alpha: float = 0.99,
     eps: float = 1e-08,
     weight_decay: float = 0,
     momentum: float = 0,
     centered: bool = False,
 ):
     param_groups = normalize_param_groups(param_groups)
     super().__init__(
         make_params_groups(model_params, param_groups),
         lr,
         alpha,
         eps,
         weight_decay,
         momentum,
         centered,
     )
     self.param_groups_names = list(param_groups.keys())