def run_dqn_algorithm(parameter_files): exp_dir = "tmp_exp_dir" diadem_params = Params(filename=parameter_files) environment = DiademBarkEnvironment(runtime=runtime) context = AgentContext(environment=environment, datamanager=None, preprocessor=None, optimizer=tf.train.AdamOptimizer, summary_service=ConsoleSummary()) agent = AgentManager(params=diadem_params, context=context) exp = Experiment(params=diadem_params['experiment'], main_dir=exp_dir, context=context, agent=agent, visualizer=None) exp.run()
def run_dqn_algorithm(parameter_files): exp_dir = "tmp_exp_dir" params = Params(filename=parameter_files) environment = BarkHighway(params=params['environment']) context = AgentContext(environment=environment, datamanager=None, preprocessor=Normalization(environment=environment), optimizer=tf.train.AdamOptimizer, summary_service=PandasSummary()) agent = AgentManager(params=params, context=context) exp = Experiment(params=params['experiment'], main_dir=exp_dir, context=context, agent=agent, visualizer=None) exp.run()
def main(): exp_dir = "tmp_exp_dir" params = Params(filename=[ "examples/example_params/common_parameters.yaml", "examples/example_params/online_rendering.yaml" ]) environment = GymEnvironment(params=params['environment']) context = AgentContext(environment=environment, datamanager=None, preprocessor=Normalization(environment=environment), optimizer=tf.train.AdamOptimizer, summary_service=ConsoleSummary()) agent = AgentManager(params=params, context=context) exp = Experiment(params=params['experiment'], main_dir=exp_dir, context=context, agent=agent, visualizer=OnlineVisualizer( params=params['visualization'], context=context)) exp.run()