def __init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation, restraints_parameterisation, frac_binsize_cutoff=0.33333, absolute_cutoffs=None, gradient_calculation_blocksize=None): Target.__init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation, gradient_calculation_blocksize) # Set up the RMSD achieved criterion. For simplicity, we take models from # the first Experiment only. If this is not appropriate for refinement over # all experiments then absolute cutoffs should be used instead. detector = experiments[0].detector if not absolute_cutoffs: pixel_sizes = [p.get_pixel_size() for p in detector] min_px_size_x = min(e[0] for e in pixel_sizes) min_px_size_y = min(e[1] for e in pixel_sizes) self._binsize_cutoffs = [ min_px_size_x * frac_binsize_cutoff, min_px_size_y * frac_binsize_cutoff ] else: self._binsize_cutoffs = absolute_cutoffs[:2] # predict reflections and finalise reflection manager self.predict() return
def __init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation, restraints_parameterisation, frac_binsize_cutoff=0.33333, absolute_cutoffs=None, gradient_calculation_blocksize=None): Target.__init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation, gradient_calculation_blocksize) # Set up the RMSD achieved criterion. For simplicity, we take models from # the first Experiment only. If this is not appropriate for refinement over # all experiments then absolute cutoffs should be used instead. detector = experiments[0].detector if not absolute_cutoffs: pixel_sizes = [p.get_pixel_size() for p in detector] min_px_size_x = min(e[0] for e in pixel_sizes) min_px_size_y = min(e[1] for e in pixel_sizes) self._binsize_cutoffs = [min_px_size_x * frac_binsize_cutoff, min_px_size_y * frac_binsize_cutoff] else: self._binsize_cutoffs = absolute_cutoffs[:2] # predict reflections and finalise reflection manager self.predict() return
def __init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation): Target.__init__(self, experiments, reflection_predictor, ref_man, prediction_parameterisation) # set the single cutoff for 2theta residual to essentially zero self._binsize_cutoffs = [1.e-6] # predict reflections and finalise reflection manager self.predict() self._reflection_manager.finalise() return