Exemple #1
0
def test_target_jacobian_calculation_finite_difference(physical_param,
                                                       single_exp,
                                                       large_reflection_table):
    """Test the calculated jacobian against a finite difference calculation."""
    test_params, exp, test_refl = physical_param, single_exp, large_reflection_table
    test_params.parameterisation.decay_term = False
    test_params.model = "physical"
    experiments = create_scaling_model(test_params, exp, test_refl)
    assert experiments[0].scaling_model.id_ == "physical"
    scaler = create_scaler(test_params, experiments, test_refl)

    apm = multi_active_parameter_manager([scaler.components], [["scale"]],
                                         scaling_active_parameter_manager)

    target = ScalingTarget()
    scaler.update_for_minimisation(apm, 0)

    fd_jacobian = calculate_jacobian_fd(target, scaler, apm)
    _, jacobian, _ = target.compute_residuals_and_gradients(
        scaler.Ih_table.blocked_data_list[0])

    n_rows = jacobian.n_rows
    n_cols = jacobian.n_cols

    print(jacobian)
    print(fd_jacobian)

    for i in range(0, n_rows):
        for j in range(0, n_cols):
            assert jacobian[i, j] == pytest.approx(fd_jacobian[i, j], abs=1e-4)
Exemple #2
0
def test_target_function(
    mock_single_Ih_table,
    mock_multi_apm_withrestraints,
    mock_multi_apm_withoutrestraints,
):
    """Test for the ScalingTarget class."""

    # Create a scaling target and check gradients
    target = ScalingTarget()
    apm_restr = mock_multi_apm_withrestraints
    apm_norestr = mock_multi_apm_withoutrestraints
    # Below methods needed for refinement engine calls
    r, w = target.compute_residuals(mock_single_Ih_table)
    assert r.size() == w.size()

    f, g = target.compute_functional_gradients(mock_single_Ih_table)
    assert isinstance(f, float)
    assert g.size(
    ) == 1  # Number of parameters as determined by deriv matrix cols

    r, j, w = target.compute_residuals_and_gradients(mock_single_Ih_table)
    assert r.size() == w.size()
    assert j.n_cols == 1  # Number of parameters as determined by jacob matrix.
    assert j.n_rows == r.size()

    with pytest.raises(AssertionError):
        _ = target.compute_functional_gradients_and_curvatures(
            mock_single_Ih_table)

    restraints = target.compute_restraints_residuals_and_gradients(apm_restr)
    assert len(restraints) == 3
    assert target.param_restraints is True

    restraints = target.compute_restraints_functional_gradients_and_curvatures(
        apm_restr)
    assert len(restraints) == 3

    achieved = target.achieved()
    assert isinstance(achieved, bool)

    restraints = target.compute_restraints_residuals_and_gradients(apm_norestr)
    assert restraints is None
    assert target.param_restraints is False

    target = ScalingTarget(
    )  # Need to make new instance or won't calc restr as
    # param_restraints is set to False
    assert target.param_restraints is True
    restraints = target.compute_restraints_functional_gradients_and_curvatures(
        apm_norestr)
    assert restraints is None
    assert target.param_restraints is False
Exemple #3
0
def test_target_function_methods():
    """Test for the target methods required for the refinement engine."""
    target = ScalingTarget()
    r, w = target.compute_residuals(mock_single_Ih_table())
    assert r.size() == w.size()
    assert r == pytest.approx([-1.0, 0.0, 1.0])
    assert w == pytest.approx([1.0, 1.0, 1.0])

    f, g = target.compute_functional_gradients(mock_single_Ih_table())
    assert f == pytest.approx(2.0)
    assert g == pytest.approx([-19.04072398])

    r2, j, w2 = target.compute_residuals_and_gradients(mock_single_Ih_table())
    assert r == r2
    assert w == w2
    assert j.n_cols == 1 and j.n_rows == 3
Exemple #4
0
def test_target_jacobian_calculation_finite_difference(physical_param,
                                                       single_exp,
                                                       large_reflection_table):
    """Test the calculated jacobian against a finite difference calculation."""
    physical_param.physical.decay_correction = False
    model = PhysicalScalingModel.from_data(physical_param, single_exp,
                                           large_reflection_table)
    # need to 'add_data'
    model.configure_components(large_reflection_table, single_exp,
                               physical_param)
    model.components["scale"].update_reflection_data()
    apm = multi_active_parameter_manager(
        ScalingTarget(),
        [model.components],
        [["scale"]],
        scaling_active_parameter_manager,
    )
    Ih_table = IhTable([large_reflection_table],
                       single_exp.crystal.get_space_group())

    with patch.object(SingleScaler, "__init__", lambda x, y, z, k: None):
        scaler = SingleScaler(None, None, None)
        scaler._Ih_table = Ih_table

        target = ScalingTarget()
        scaler.update_for_minimisation(apm, 0)

        fd_jacobian = calculate_jacobian_fd(target, scaler, apm)
        r, jacobian, w = target.compute_residuals_and_gradients(
            scaler.Ih_table.blocked_data_list[0])
        assert r == pytest.approx(
            [-50.0 / 3.0, 70.0 / 3.0, -20.0 / 3.0, 12.5, -2.5] +
            [-25.0, 0.0, -75.0, 0.0, 200.0])
        assert w == pytest.approx(
            [0.1, 0.1, 0.1, 0.02, 0.1, 0.02, 0.01, 0.02, 0.01, 0.01])

        n_rows = jacobian.n_rows
        n_cols = jacobian.n_cols

        print(jacobian)
        print(fd_jacobian)

        for i in range(0, n_rows):
            for j in range(0, n_cols):
                assert jacobian[i, j] == pytest.approx(fd_jacobian[i, j],
                                                       abs=1e-4)