Exemple #1
0
    def __call__(self):
        """
        Do the processing.

        :return: The processed data
        """
        # Set the job index
        job.index = self.index

        # Get the start time
        start_time = time()

        # Check all reflections have same imageset and get it
        exp_id = list(set(self.reflections["id"]))
        imageset = self.experiments[exp_id[0]].imageset
        for i in exp_id[1:]:
            assert (self.experiments[i].imageset == imageset
                    ), "Task can only handle 1 imageset"

        # Get the sub imageset
        frame00, frame01 = self.frames
        try:
            frame10, frame11 = imageset.get_array_range()
        except Exception:
            frame10, frame11 = (0, len(imageset))
        try:
            assert frame00 < frame01
            assert frame10 < frame11
            assert frame00 >= frame10
            assert frame01 <= frame11
            index0 = frame00 - frame10
            index1 = index0 + (frame01 - frame00)
            assert index0 < index1
            assert index0 >= 0
            assert index1 <= len(imageset)
            imageset = imageset[index0:index1]
        except Exception:
            raise RuntimeError("Programmer Error: bad array range")
        try:
            frame0, frame1 = imageset.get_array_range()
        except Exception:
            frame0, frame1 = (0, len(imageset))

        # Initialise the dataset
        image_volume = MultiPanelImageVolume()
        for panel in self.experiments[0].detector:
            image_volume.add(
                ImageVolume(frame0, frame1,
                            panel.get_image_size()[1],
                            panel.get_image_size()[0]))

        # Read all the images into a block of data
        read_time = 0.0
        for i in range(len(imageset)):
            st = time()
            image = imageset.get_corrected_data(i)
            mask = imageset.get_mask(i)
            if self.params.integration.lookup.mask is not None:
                assert len(mask) == len(
                    self.params.lookup.mask
                ), "Mask/Image are incorrect size %d %d" % (
                    len(mask),
                    len(self.params.integration.lookup.mask),
                )
                mask = tuple(m1 & m2 for m1, m2 in zip(
                    self.params.integration.lookup.mask, mask))
            image_volume.set_image(frame0 + i, make_image(image, mask))
            read_time += time() - st
            del image
            del mask

        # Process the data
        st = time()
        data = self.executor.process(image_volume, self.experiments,
                                     self.reflections)
        process_time = time() - st

        # Set the result values
        return dials.algorithms.integration.Result(
            index=self.index,
            reflections=self.reflections,
            read_time=read_time,
            process_time=process_time,
            total_time=time() - start_time,
            extract_time=0,
            data=data,
        )
Exemple #2
0
  def __call__(self):
    '''
    Do the processing.

    :return: The processed data

    '''
    from dials.model.data import make_image
    from dials.model.data import MultiPanelImageVolume
    from dials.model.data import ImageVolume
    from dials.algorithms.integration.processor import job
    from time import time

    # Set the job index
    job.index = self.index

    # Get the start time
    start_time = time()

    # Check all reflections have same imageset and get it
    exp_id = list(set(self.reflections['id']))
    imageset = self.experiments[exp_id[0]].imageset
    for i in exp_id[1:]:
      assert self.experiments[i].imageset == imageset, "Task can only handle 1 imageset"

    # Get the sub imageset
    frame00, frame01 = self.frames
    try:
      frame10, frame11 = imageset.get_array_range()
    except Exception:
      frame10, frame11 = (0, len(imageset))
    try:
      assert frame00 < frame01
      assert frame10 < frame11
      assert frame00 >= frame10
      assert frame01 <= frame11
      index0 = frame00 - frame10
      index1 = index0 + (frame01 - frame00)
      assert index0 < index1
      assert index0 >= 0
      assert index1 <= len(imageset)
      imageset = imageset[index0:index1]
    except Exception:
      raise RuntimeError('Programmer Error: bad array range')
    try:
      frame0, frame1 = imageset.get_array_range()
    except Exception:
      frame0, frame1 = (0, len(imageset))

    # Initialise the dataset
    image_volume = MultiPanelImageVolume()
    for panel in self.experiments[0].detector:
      image_volume.add(ImageVolume(
        frame0,
        frame1,
        panel.get_image_size()[1],
        panel.get_image_size()[0]))

    # Read all the images into a block of data
    read_time = 0.0
    for i in range(len(imageset)):
      st = time()
      image = imageset.get_corrected_data(i)
      mask  = imageset.get_mask(i)
      if self.params.integration.lookup.mask is not None:
        assert len(mask) == len(self.params.lookup.mask), \
          "Mask/Image are incorrect size %d %d" % (
            len(mask),
            len(self.params.integration.lookup.mask))
        mask = tuple(m1 & m2 for m1, m2 in zip(self.params.integration.lookup.mask, mask))
      image_volume.set_image(frame0 + i, make_image(image, mask))
      read_time += time() - st
      del image
      del mask

    # Process the data
    st = time()
    data = self.executor.process(
      image_volume,
      self.experiments,
      self.reflections)
    process_time = time() - st

    # Set the result values
    result = Result(self.index, self.reflections)
    result.read_time = read_time
    result.process_time = process_time
    result.total_time = time() - start_time
    result.data = data
    return result