def supercell(S, mno):
    """Perform supercell expansion for a structure.

    New lattice parameters are multiplied and fractional coordinates
    divided by corresponding multiplier.  New atoms are grouped with
    their source in the original cell.

    S   -- an instance of Structure from diffpy.Structure.
    mno -- sequence of 3 integers for cell multipliers along
           the a, b and c axes.

    Return a new expanded structure instance.
    Raise TypeError when S is not Structure instance.
    Raise ValueError for invalid mno argument.
    """
    # check arguments
    if len(mno) != 3:
        emsg = "Argument mno must contain 3 numbers."
        raise ValueError, emsg
    elif min(mno) < 1:
        emsg = "Multipliers must be greater or equal 1"
        raise ValueError, emsg
    if not isinstance(S, Structure):
        emsg = "The first argument must be a Structure instance."
        raise TypeError, emsg

    # convert mno to a tuple of integers so it can be used as range limit.
    mno = (int(mno[0]), int(mno[1]), int(mno[2]))

    # create return instance
    newS = Structure(S)
    if mno == (1, 1, 1):
        return newS

    # back to business
    ijklist = [(i,j,k)
                for i in range(mno[0])
                    for j in range(mno[1])
                        for k in range(mno[2])]
    # numpy.floor returns float array
    mnofloats = numpy.array(mno, dtype=float)

    # build a list of new atoms
    newAtoms = []
    for a in S:
        for ijk in ijklist:
            adup = Atom(a)
            adup.xyz = (a.xyz + ijk)/mnofloats
            newAtoms.append(adup)
    # newS can own references in newAtoms, no need to make copies
    newS.__setslice__(0, len(newS), newAtoms, copy=False)

    # take care of lattice parameters
    newS.lattice.setLatPar(
            a=mno[0]*S.lattice.a,
            b=mno[1]*S.lattice.b,
            c=mno[2]*S.lattice.c )
    return newS
Exemple #2
0
 def test_writeStr_xyz(self):
     """check string representation of normal xyz file"""
     stru = self.stru
     stru.title = "test of writeStr"
     stru.lattice = Lattice(1.0, 2.0, 3.0, 90.0, 90.0, 90.0)
     stru[:] = [Atom('H', [1., 1., 1.]), Atom('Cl', [3., 2., 1.])]
     s1 = stru.writeStr(self.format)
     s1 = re.sub('[ \t]+', ' ', s1)
     s0 = "2\n%s\nH 1 2 3\nCl 3 4 3\n" % stru.title
     self.assertEqual(s1, s0)
Exemple #3
0
def supercell(S, mno):
    """Perform supercell expansion for a structure.

    New lattice parameters are multiplied and fractional coordinates
    divided by corresponding multiplier.  New atoms are grouped with
    their source in the original cell.

    S   -- an instance of Structure from diffpy.Structure.
    mno -- sequence of 3 integers for cell multipliers along
           the a, b and c axes.

    Return a new expanded structure instance.
    Raise TypeError when S is not Structure instance.
    Raise ValueError for invalid mno argument.
    """
    # check arguments
    if len(mno) != 3:
        emsg = "Argument mno must contain 3 numbers."
        raise ValueError, emsg
    elif min(mno) < 1:
        emsg = "Multipliers must be greater or equal 1"
        raise ValueError, emsg
    if not isinstance(S, Structure):
        emsg = "The first argument must be a Structure instance."
        raise TypeError, emsg

    # convert mno to a tuple of integers so it can be used as range limit.
    mno = (int(mno[0]), int(mno[1]), int(mno[2]))

    # create return instance
    newS = Structure(S)
    if mno == (1, 1, 1):
        return newS

    # back to business
    ijklist = [(i, j, k) for i in range(mno[0]) for j in range(mno[1])
               for k in range(mno[2])]
    # numpy.floor returns float array
    mnofloats = numpy.array(mno, dtype=float)

    # build a list of new atoms
    newAtoms = []
    for a in S:
        for ijk in ijklist:
            adup = Atom(a)
            adup.xyz = (a.xyz + ijk) / mnofloats
            newAtoms.append(adup)
    # newS can own references in newAtoms, no need to make copies
    newS.__setslice__(0, len(newS), newAtoms, copy=False)

    # take care of lattice parameters
    newS.lattice.setLatPar(a=mno[0] * S.lattice.a,
                           b=mno[1] * S.lattice.b,
                           c=mno[2] * S.lattice.c)
    return newS
Exemple #4
0
 def test_write_xyz(self):
     """check writing of normal xyz file"""
     stru = self.stru
     stru.title = "test of writeStr"
     stru.lattice = Lattice(1.0, 2.0, 3.0, 90.0, 90.0, 90.0)
     stru[:] = [Atom('H', [1., 1., 1.]), Atom('Cl', [3., 2., 1.])]
     stru.write(self.tmpname, self.format)
     f_s = open(self.tmpname).read()
     f_s = re.sub('[ \t]+', ' ', f_s)
     s_s = "2\n%s\nH 1 2 3\nCl 3 4 3\n" % stru.title
     self.assertEqual(f_s, s_s)
Exemple #5
0
def fccAl():
    atoms = [
        Atom('Al', (0, 0, 0)),
        Atom('Al', (0.5, 0.5, 0)),
        Atom('Al', (0.5, 0, 0.5)),
        Atom('Al', (0, 0.5, 0.5))
    ]
    a = 4.046
    alpha = 90.
    lattice = Lattice(a=a, b=a, c=a, alpha=alpha, beta=alpha, gamma=alpha)
    return Structure(atoms, lattice, sgid=225)
Exemple #6
0
def fccNi():
    atoms = [
        Atom('Ni', (0, 0, 0)),
        Atom('Ni', (0.5, 0.5, 0)),
        Atom('Ni', (0.5, 0, 0.5)),
        Atom('Ni', (0, 0.5, 0.5))
    ]
    a = 3.5238
    alpha = 90.
    lattice = Lattice(a=a, b=a, c=a, alpha=alpha, beta=alpha, gamma=alpha)
    return Structure(atoms, lattice, sgid=225)
Exemple #7
0
 def setUp(self):
     self.stru = Structure( [ Atom('C', [0,0,0]), Atom('C', [1,1,1]) ],
             lattice=Lattice(1, 1, 1, 90, 90, 120) )
     if not self._loaded_structures:
         self._loaded_structures.update([
             ('cdse', Structure(filename=cdsefile)),
             ('tei', Structure(filename=teifile)),
             ('pbte', Structure(filename=pbtefile)),
             ])
     self.__dict__.update(self._loaded_structures)
     self.places = 12
     return
Exemple #8
0
    def expandAsymmetricUnit(self, spacegroup, indices, sgoffset=[0, 0, 0]):
        """Perform symmetry expansion for atoms at given indices.
        Temperature factors may be corrected to reflect the symmetry.
        All constraints for expanded atoms are erased with the exception
        of the occupancy("occ".  Constraints of unaffected atoms are adjusted
        for new positions self.initial.

        spacegroup  -- instance of Structure.SpaceGroup
        indices     -- list of integer indices of atoms to be expanded
        sgoffset    -- optional offset of space group origin [0,0,0]
        """
        from diffpy.Structure.SymmetryUtilities import ExpandAsymmetricUnit
        acd = self._popAtomConstraints()
        # get unique, reverse sorted indices
        ruindices = dict.fromkeys(indices).keys()
        ruindices.sort()
        ruindices.reverse()
        coreatoms = [self.initial[i] for i in ruindices]
        corepos = [a.xyz for a in coreatoms]
        coreUijs = [a.U for a in coreatoms]
        eau = ExpandAsymmetricUnit(spacegroup,
                                   corepos,
                                   coreUijs,
                                   sgoffset=sgoffset,
                                   eps=self.symposeps)
        # build a nested list of new atoms:
        newatoms = []
        for i in range(len(coreatoms)):
            ca = coreatoms[i]
            caocc_con = None
            if ca in acd and "occ" in acd[ca]:
                caocc_con = acd[ca]["occ"]
            eca = []  # expanded core atom
            for j in range(eau.multiplicity[i]):
                a = Atom(ca)
                a.xyz = eau.expandedpos[i][j]
                a.U = eau.expandedUijs[i][j]
                eca.append(a)
                if caocc_con is None: continue
                # make a copy of occupancy constraint
                acd[a] = {"occ": copy.copy(caocc_con)}
            newatoms.append(eca)
        # insert new atoms where they belong
        for i, atomlist in zip(ruindices, newatoms):
            self.initial[i:i + 1] = atomlist
        # remember this spacegroup as the last one used
        self.initial.pdffit["spcgr"] = spacegroup.short_name
        self.initial.pdffit["sgoffset"] = list(sgoffset)
        # tidy constraints
        self._restoreAtomConstraints(acd)
        return
Exemple #9
0
    def expandAsymmetricUnit(self, spacegroup, indices, sgoffset=[0, 0, 0]):
        """Perform symmetry expansion for atoms at given indices.
        Temperature factors may be corrected to reflect the symmetry.
        All constraints for expanded atoms are erased with the exception
        of the occupancy("occ".  Constraints of unaffected atoms are adjusted
        for new positions self.initial.

        spacegroup  -- instance of Structure.SpaceGroup
        indices     -- list of integer indices of atoms to be expanded
        sgoffset    -- optional offset of space group origin [0,0,0]
        """
        from diffpy.Structure.SymmetryUtilities import ExpandAsymmetricUnit

        acd = self._popAtomConstraints()
        # get unique, reverse sorted indices
        ruindices = dict.fromkeys(indices).keys()
        ruindices.sort()
        ruindices.reverse()
        coreatoms = [self.initial[i] for i in ruindices]
        corepos = [a.xyz for a in coreatoms]
        coreUijs = [a.U for a in coreatoms]
        eau = ExpandAsymmetricUnit(spacegroup, corepos, coreUijs, sgoffset=sgoffset, eps=self.symposeps)
        # build a nested list of new atoms:
        newatoms = []
        for i in range(len(coreatoms)):
            ca = coreatoms[i]
            caocc_con = None
            if ca in acd and "occ" in acd[ca]:
                caocc_con = acd[ca]["occ"]
            eca = []  # expanded core atom
            for j in range(eau.multiplicity[i]):
                a = Atom(ca)
                a.xyz = eau.expandedpos[i][j]
                a.U = eau.expandedUijs[i][j]
                eca.append(a)
                if caocc_con is None:
                    continue
                # make a copy of occupancy constraint
                acd[a] = {"occ": copy.copy(caocc_con)}
            newatoms.append(eca)
        # insert new atoms where they belong
        for i, atomlist in zip(ruindices, newatoms):
            self.initial[i : i + 1] = atomlist
        # remember this spacegroup as the last one used
        self.initial.pdffit["spcgr"] = spacegroup.short_name
        self.initial.pdffit["sgoffset"] = list(sgoffset)
        # tidy constraints
        self._restoreAtomConstraints(acd)
        return
 def test_insertAtoms(self):
     """check FitStructure.insertAtoms()
     """
     from diffpy.Structure import Atom
     stru = self.stru
     stru.read(datafile('Ni.stru'), format='pdffit')
     cns = Constraint('@1')
     stru.constraints['x(2)'] = cns
     stru.insertAtoms(0, [Atom('Na', (0, 0, 0))])
     self.assertEqual(5, len(stru))
     self.assertEqual(1, len(stru.constraints))
     self.failUnless(cns is stru.constraints['x(3)'])
     stru.insertAtoms(5, [Atom('Cl', (0, 0, 0))])
     self.failUnless(['x(3)'] == stru.constraints.keys())
     return
Exemple #11
0
 def test_pickling(self):
     """Test pickling of DiffpyStructureParSet.
     """
     stru = Structure([Atom("C", [0, 0.2, 0.5])])
     dsps = DiffpyStructureParSet("dsps", stru)
     data = pickle.dumps(dsps)
     dsps2 = pickle.loads(data)
     self.assertEqual(1, len(dsps2.atoms))
     self.assertEqual(0.2, dsps2.atoms[0].y.value)
     return
Exemple #12
0
 def test___repr__(self):
     """Test representation of DiffpyStructureParSet objects.
     """
     lat = Lattice(3, 3, 2, 90, 90, 90)
     atom = Atom("C", [0, 0.2, 0.5])
     stru = Structure([atom], lattice=lat)
     dsps = DiffpyStructureParSet("dsps", stru)
     self.assertEqual(repr(stru), repr(dsps))
     self.assertEqual(repr(lat), repr(dsps.lattice))
     self.assertEqual(repr(atom), repr(dsps.atoms[0]))
     return
 def test___init__(self):
     """check Structure.__init__()
     """
     atoms = [Atom('C', [0, 0, 0]), Atom('C', [0.5, 0.5, 0.5])]
     self.assertRaises(ValueError, Structure, atoms, filename=teifile)
     self.assertRaises(ValueError,
                       Structure,
                       lattice=Lattice(),
                       filename=teifile)
     self.assertRaises(ValueError,
                       Structure,
                       title='test',
                       filename=teifile)
     stru1 = Structure(title='my title')
     self.assertEqual('my title', stru1.title)
     stru2a = Structure(atoms)
     stru2b = Structure(iter(atoms))
     stru2c = Structure(a for a in atoms)
     s2a = str(stru2a)
     self.assertEqual(s2a, str(stru2b))
     self.assertEqual(s2a, str(stru2c))
     return
Exemple #14
0
 def test___setslice__(self):
     """check Structure.__setslice__()
     """
     a = Atom("Si", (0.1, 0.2, 0.3))
     lat = self.stru.lattice
     self.stru[:] = [a]
     a0 = self.stru[0]
     self.assertEqual(1, len(self.stru))
     self.assertEqual('Si', a0.element)
     self.failUnless(lat is a0.lattice)
     self.failUnless(numpy.array_equal(a.xyz, a0.xyz))
     self.failIf(a is a0)
     self.failIf(lat is a.lattice)
     return
Exemple #15
0
 def test_append(self):
     """check Structure.append()
     """
     a = Atom("Si", (0.1, 0.2, 0.3))
     lat = self.stru.lattice
     self.stru.append(a)
     alast = self.stru[-1]
     self.assertEqual(3, len(self.stru))
     self.assertEqual('Si', alast.element)
     self.failUnless(lat is alast.lattice)
     self.failUnless(numpy.array_equal(a.xyz, alast.xyz))
     self.failIf(a is alast)
     self.failIf(lat is a.lattice)
     return
 def test_insert(self):
     """check Structure.insert()
     """
     a = Atom("Si", (0.1, 0.2, 0.3))
     lat = self.stru.lattice
     self.stru.insert(1, a)
     a1 = self.stru[1]
     self.assertEqual(3, len(self.stru))
     self.assertEqual('Si', a1.element)
     self.assertTrue(lat is a1.lattice)
     self.assertTrue(numpy.array_equal(a.xyz, a1.xyz))
     self.assertFalse(a is a1)
     self.assertFalse(lat is a.lattice)
     return
Exemple #17
0
 def test_setStructure(self):
     """check PairQuantity.setStructure()
     """
     from diffpy.Structure import Structure, Atom
     from diffpy.srreal.structureadapter import EMPTY
     stru = Structure([Atom("Ar", [0.1, 0.2, 0.3])])
     self.pq.setStructure(stru)
     adpt = self.pq.getStructure()
     self.assertEqual(1, adpt.countSites())
     self.assertEqual("Ar", adpt.siteAtomType(0))
     self.pq.setStructure(EMPTY)
     adpt = self.pq.getStructure()
     self.assertEqual(0, adpt.countSites())
     return
Exemple #18
0
 def test___setitem__(self):
     """check Structure.__setitem__()
     """
     a = Atom("Si", (0.1, 0.2, 0.3))
     lat = self.stru.lattice
     self.stru[1] = a
     a1 = self.stru[1]
     self.assertEqual(2, len(self.stru))
     self.assertEqual('Si', a1.element)
     self.failUnless(lat is a1.lattice)
     self.failUnless(numpy.array_equal(a.xyz, a1.xyz))
     self.failIf(a is a1)
     self.failIf(lat is a.lattice)
     return
Exemple #19
0
 def test_writeStr_rawxyz(self):
     """check writing of normal xyz file"""
     stru = self.stru
     stru.title = "test of writeStr"
     stru.lattice = Lattice(1.0, 2.0, 3.0, 90.0, 90.0, 90.0)
     # plain version
     stru[:] = [Atom('H', [1., 1., 1.])]
     s1 = stru.writeStr(self.format)
     s1 = re.sub('[ \t]+', ' ', s1)
     s0 = "H 1 2 3\n"
     # brutal raw version
     stru[0].element = ""
     s1 = stru.writeStr(self.format)
     s0 = "1 2 3\n"
     self.assertEqual(s1, s0)
 def test_getvar(self):
     """check PDFStructure.getvar()
     """
     from diffpy.Structure import Atom
     stru = self.stru
     abcABG = (3.0, 4.0, 5.0, 81, 82, 83)
     stru.lattice.setLatPar(*abcABG)
     for i in range(6):
         self.assertEqual(abcABG[i], stru.getvar('lat(%i)' % (i + 1)))
     stru.append(Atom('Ni', [0.1, 0.2, 0.3]))
     self.assertEqual(0.1, stru.getvar('x(1)'))
     self.assertEqual(0.2, stru.getvar('y(1)'))
     self.assertEqual(0.3, stru.getvar('z(1)'))
     # spdiameter
     self.assertEqual(0.0, stru.getvar('spdiameter'))
     stru.pdffit['spdiameter'] = 37.7
     self.assertEqual(37.7, stru.getvar('spdiameter'))
     # stepcut
     self.assertEqual(0.0, stru.getvar('stepcut'))
     stru.pdffit['stepcut'] = 17.7
     self.assertEqual(17.7, stru.getvar('stepcut'))
     return
Exemple #21
0
def bccFe():
    atoms = [Atom('Fe', (0, 0, 0)), Atom('Fe', (0.5, 0.5, 0.5))]
    a = 2.856
    alpha = 90.
    lattice = Lattice(a=a, b=a, c=a, alpha=alpha, beta=alpha, gamma=alpha)
    return Structure(atoms, lattice, sgid=229)
Exemple #22
0
    def testDiffpyStructureParSet(self):
        """Test the structure conversion."""

        a1 = Atom("Cu", xyz = numpy.array([.0, .1, .2]), Uisoequiv = 0.003)
        a2 = Atom("Ag", xyz = numpy.array([.3, .4, .5]), Uisoequiv = 0.002)
        l = Lattice(2.5, 2.5, 2.5, 90, 90, 90)

        dsstru = Structure([a1,a2], l)
        # Structure makes copies
        a1 = dsstru[0]
        a2 = dsstru[1]

        s = DiffpyStructureParSet("CuAg", dsstru)

        self.assertEquals(s.name, "CuAg")

        def _testAtoms():
            # Check the atoms thoroughly
            self.assertEquals(a1.element, s.Cu0.element)
            self.assertEquals(a2.element, s.Ag0.element)
            self.assertEquals(a1.Uisoequiv, s.Cu0.Uiso.getValue())
            self.assertEquals(a2.Uisoequiv, s.Ag0.Uiso.getValue())
            self.assertEquals(a1.Bisoequiv, s.Cu0.Biso.getValue())
            self.assertEquals(a2.Bisoequiv, s.Ag0.Biso.getValue())
            for i in xrange(1,4):
                for j in xrange(i,4):
                    uijstru = getattr(a1, "U%i%i"%(i,j))
                    uij = getattr(s.Cu0, "U%i%i"%(i,j)).getValue()
                    uji = getattr(s.Cu0, "U%i%i"%(j,i)).getValue()
                    self.assertEquals(uijstru, uij)
                    self.assertEquals(uijstru, uji)
                    bijstru = getattr(a1, "B%i%i"%(i,j))
                    bij = getattr(s.Cu0, "B%i%i"%(i,j)).getValue()
                    bji = getattr(s.Cu0, "B%i%i"%(j,i)).getValue()
                    self.assertEquals(bijstru, bij)
                    self.assertEquals(bijstru, bji)

            self.assertEquals(a1.xyz[0], s.Cu0.x.getValue())
            self.assertEquals(a1.xyz[1], s.Cu0.y.getValue())
            self.assertEquals(a1.xyz[2], s.Cu0.z.getValue())
            return

        def _testLattice():

            # Test the lattice
            self.assertEquals(dsstru.lattice.a, s.lattice.a.getValue())
            self.assertEquals(dsstru.lattice.b, s.lattice.b.getValue())
            self.assertEquals(dsstru.lattice.c, s.lattice.c.getValue())
            self.assertEquals(dsstru.lattice.alpha, s.lattice.alpha.getValue())
            self.assertEquals(dsstru.lattice.beta, s.lattice.beta.getValue())
            self.assertEquals(dsstru.lattice.gamma, s.lattice.gamma.getValue())

        _testAtoms()
        _testLattice()

        # Now change some values from the diffpy Structure
        a1.xyz[1] = 0.123
        a1.U11 = 0.321
        a1.B32 = 0.111
        dsstru.lattice.setLatPar(a=3.0, gamma=121)
        _testAtoms()
        _testLattice()

        # Now change values from the srfit DiffpyStructureParSet
        s.Cu0.x.setValue(0.456)
        s.Cu0.U22.setValue(0.441)
        s.Cu0.B13.setValue(0.550)
        d = dsstru.lattice.dist(a1.xyz, a2.xyz)
        s.lattice.b.setValue(4.6)
        s.lattice.alpha.setValue(91.3)
        _testAtoms()
        _testLattice()
        # Make sure the distance changed
        self.assertNotEquals(d, dsstru.lattice.dist(a1.xyz, a2.xyz))
        return
    def parseLines(self, lines):
        """Parse list of lines in atoms format.

        Return Structure object or raise StructureFormatError.
        """

        comlist = ["#", "%", "!", "*"]
        atoms = []
        title = ""
        anext = False
        sg = None
        structure = BRAtomsStructure()
        meta = structure.bratoms
        pdict = dict.fromkeys(self.plist)


        # Count the lines
        ln = 0
        try:

            for line in lines:
                ln += 1

                # Strip comments from the line
                for c in comlist:
                    idx = line.find(c)
                    if idx != -1:
                        line = line[:idx]

                # Move on if there is not a line
                if not line: continue

                # Move on if there was only white space in the line
                sline = line.split()
                if not sline: continue

                # Check if we have atoms following
                if sline[0].startswith("atom"):
                    anext = True
                    continue

                # Check for title
                if sline[0].startswith("title"):
                    if title: title += "\n"
                    title += line[5:]
                    continue

                # Get rid of pesky "=" and "," signs
                while "=" in sline: sline.remove("=")
                while "," in sline: sline.remove(",")

                # space group
                if sline and sline[0].startswith("space"):
                    meta["space"] = line[5:].strip()
                    continue

                # output
                if sline and sline[0].startswith("output"):
                    meta["output"] = line[6:].strip()
                    continue

                # shift
                if sline and sline[0].startswith("shift"):
                    meta["shift"] = line[5:].strip()
                    continue

                # Check for other metadata
                while sline and sline[0].strip() in meta:
                    key = sline.pop(0).strip()
                    if key == "central": key = "core"
                    meta[key] = sline.pop(0).strip()

                # Check for lattice information.
                while sline and sline[0].strip() in self.plist:
                    key = sline.pop(0).strip()
                    pdict[key] = float(sline.pop(0))

                # Check for atom information
                if sline and anext:

                    elraw = sline.pop(0).strip()
                    el = elraw[:1].upper() + elraw[1:].lower()
                    x = float(sline.pop(0))
                    y = float(sline.pop(0))
                    z = float(sline.pop(0))

                    tag = ""
                    if sline:
                        tag = sline.pop(0).strip()
                    occ = 1.0
                    if sline:
                        occ = float(sline.pop(0))

                    a = Atom( atype = el,
                        xyz = [x,y,z],
                        name = tag,
                        occupancy = occ)

                    atoms.append(a)

        except (ValueError, IndexError), e:
            emsg = "%d: file is not in Atoms format" % ln
            raise StructureFormatError(emsg)
    def parseLines(self, lines):
        """Parse list of lines in atoms format.

        Return Structure object or raise StructureFormatError.
        """

        comlist = ["#", "%", "!", "*"]
        atoms = []
        title = ""
        anext = False
        structure = BRAtomsStructure()
        meta = structure.bratoms
        pdict = dict.fromkeys(self.plist)


        # Count the lines
        ln = 0
        try:

            for line in lines:
                ln += 1

                # Strip comments from the line
                for c in comlist:
                    idx = line.find(c)
                    if idx != -1:
                        line = line[:idx]

                # Move on if there is not a line
                if not line: continue

                # Move on if there was only white space in the line
                sline = line.split()
                if not sline: continue

                # Check if we have atoms following
                if sline[0].startswith("atom"):
                    anext = True
                    continue

                # Check for title
                if sline[0].startswith("title"):
                    if title: title += "\n"
                    title += line[5:]
                    continue

                # Get rid of pesky "=" and "," signs
                while "=" in sline: sline.remove("=")
                while "," in sline: sline.remove(",")

                # space group
                if sline and sline[0].startswith("space"):
                    meta["space"] = line[5:].strip()
                    continue

                # output
                if sline and sline[0].startswith("output"):
                    meta["output"] = line[6:].strip()
                    continue

                # shift
                if sline and sline[0].startswith("shift"):
                    meta["shift"] = line[5:].strip()
                    continue

                # Check for other metadata
                while sline and sline[0].strip() in meta:
                    key = sline.pop(0).strip()
                    if key == "central": key = "core"
                    meta[key] = sline.pop(0).strip()

                # Check for lattice information.
                while sline and sline[0].strip() in self.plist:
                    key = sline.pop(0).strip()
                    pdict[key] = float(sline.pop(0))

                # Check for atom information
                if sline and anext:

                    elraw = sline.pop(0).strip()
                    el = elraw[:1].upper() + elraw[1:].lower()
                    x = float(sline.pop(0))
                    y = float(sline.pop(0))
                    z = float(sline.pop(0))

                    tag = ""
                    if sline:
                        tag = sline.pop(0).strip()
                    occ = 1.0
                    if sline:
                        occ = float(sline.pop(0))

                    a = Atom(atype = el,
                        xyz = [x, y, z],
                        label = tag,
                        occupancy = occ)

                    atoms.append(a)

        except (ValueError, IndexError):
            emsg = "%d: file is not in Atoms format" % ln
            raise StructureFormatError(emsg)

        # Make sure we have atoms.
        if len(atoms) == 0:
            raise StructureFormatError("File contains no atoms")

        # Make sure we have unit cell parameters
        if pdict["a"] is None:
            emsg = "Missing definition of cell parameter"
            raise StructureFormatError(emsg)

        # Fill in optional information if it was missing.
        if pdict["alpha"] is None:
            pdict["alpha"] = 90.0
        if pdict["beta"] is None:
            pdict["beta"] = pdict["alpha"]
        if pdict["gamma"] is None:
            pdict["gamma"] = pdict["alpha"]
        if pdict["b"] is None:
            pdict["b"] = pdict["a"]
        if pdict["c"] is None:
            pdict["c"] = pdict["a"]

        if meta['core'] is None:
            meta['core'] = atoms[0].element

        lat = Lattice(**pdict)
        structure.title = title
        structure.lattice = lat
        structure.extend(atoms)
        return structure
Exemple #25
0
    def expandSuperCell(self, mno):
        """Perform supercell expansion for this structure and adjust
        constraints for positions and lattice parameters.  New lattice
        parameters are multiplied and fractional coordinates divided by
        corresponding multiplier.  New atoms are grouped with their source
        in the original cell.

        mno -- tuple or list of three positive integer cell multipliers along
        the a, b, c axis
        """
        # check argument
        if tuple(mno) == (1, 1, 1):     return
        if min(mno) < 1:
            raise ControlValueError("mno must contain 3 positive integers")
        # back to business
        acd = self._popAtomConstraints()
        mnofloats = numpy.array(mno[:3], dtype=float)
        ijklist = [(i,j,k) for i in range(mno[0])
                    for j in range(mno[1]) for k in range(mno[2])]
        # build a list of new atoms
        newatoms = []
        for a in self.initial:
            for ijk in ijklist:
                adup = Atom(a)
                adup.xyz = (a.xyz + ijk)/mnofloats
                newatoms.append(adup)
                # does atom a have any constraint?
                if a not in acd:    continue
                # add empty constraint dictionary for duplicate atom
                acd[adup] = {}
                for barevar, con in acd[a].iteritems():
                    formula = con.formula
                    if barevar in ("x", "y", "z"):
                        symidx = "xyz".index(barevar)
                        if ijk[symidx] != 0:
                            formula += " + %i" % ijk[symidx]
                        if mno[symidx] > 1:
                            formula = "(%s)/%.1f" % (formula, mno[symidx])
                            formula = re.sub(r'\((@\d+)\)', r'\1', formula)
                    # keep other formulas intact and add constraint
                    # for barevar of the duplicate atom
                    acd[adup][barevar] = Constraint(formula)
        # replace original atoms with newatoms
        self.initial[:] = newatoms
        for ai, an in zip(self.initial, newatoms):
            if an in acd:
                acd[ai] = acd[an]
        # and rebuild their constraints
        self._restoreAtomConstraints(acd)
        # take care of lattice parameters
        self.initial.lattice.setLatPar(
                a=mno[0]*self.initial.lattice.a,
                b=mno[1]*self.initial.lattice.b,
                c=mno[2]*self.initial.lattice.c )
        # adjust lattice constraints if present
        latvars = ( "lat(1)", "lat(2)", "lat(3)" )
        for var, multiplier in zip(latvars, mno):
            if var in self.constraints and multiplier > 1:
                con = self.constraints[var]
                formula = "%.0f*(%s)" % (multiplier, con.formula)
                formula = re.sub(r'\((@\d+)\)', r'\1', formula)
                con.formula = formula
        return
    def testDiffpyStructureParSet(self):
        """Test the structure conversion."""

        a1 = Atom("Cu", xyz = numpy.array([.0, .1, .2]), Uisoequiv = 0.003)
        a2 = Atom("Ag", xyz = numpy.array([.3, .4, .5]), Uisoequiv = 0.002)
        l = Lattice(2.5, 2.5, 2.5, 90, 90, 90)

        dsstru = Structure([a1,a2], l)
        # Structure makes copies
        a1 = dsstru[0]
        a2 = dsstru[1]

        s = DiffpyStructureParSet("CuAg", dsstru)

        self.assertEquals(s.name, "CuAg")

        def _testAtoms():
            # Check the atoms thoroughly
            self.assertEquals(a1.element, s.Cu0.element)
            self.assertEquals(a2.element, s.Ag0.element)
            self.assertEquals(a1.Uisoequiv, s.Cu0.Uiso.getValue())
            self.assertEquals(a2.Uisoequiv, s.Ag0.Uiso.getValue())
            self.assertEquals(a1.Bisoequiv, s.Cu0.Biso.getValue())
            self.assertEquals(a2.Bisoequiv, s.Ag0.Biso.getValue())
            for i in xrange(1,4):
                for j in xrange(i,4):
                    uijstru = getattr(a1, "U%i%i"%(i,j))
                    uij = getattr(s.Cu0, "U%i%i"%(i,j)).getValue()
                    uji = getattr(s.Cu0, "U%i%i"%(j,i)).getValue()
                    self.assertEquals(uijstru, uij)
                    self.assertEquals(uijstru, uji)
                    bijstru = getattr(a1, "B%i%i"%(i,j))
                    bij = getattr(s.Cu0, "B%i%i"%(i,j)).getValue()
                    bji = getattr(s.Cu0, "B%i%i"%(j,i)).getValue()
                    self.assertEquals(bijstru, bij)
                    self.assertEquals(bijstru, bji)

            self.assertEquals(a1.xyz[0], s.Cu0.x.getValue())
            self.assertEquals(a1.xyz[1], s.Cu0.y.getValue())
            self.assertEquals(a1.xyz[2], s.Cu0.z.getValue())
            return

        def _testLattice():

            # Test the lattice
            self.assertEquals(dsstru.lattice.a, s.lattice.a.getValue())
            self.assertEquals(dsstru.lattice.b, s.lattice.b.getValue())
            self.assertEquals(dsstru.lattice.c, s.lattice.c.getValue())
            self.assertEquals(dsstru.lattice.alpha, s.lattice.alpha.getValue())
            self.assertEquals(dsstru.lattice.beta, s.lattice.beta.getValue())
            self.assertEquals(dsstru.lattice.gamma, s.lattice.gamma.getValue())

        _testAtoms()
        _testLattice()

        # Now change some values from the diffpy Structure
        a1.xyz[1] = 0.123
        a1.U11 = 0.321
        a1.B32 = 0.111
        dsstru.lattice.setLatPar(a=3.0, gamma=121)
        _testAtoms()
        _testLattice()

        # Now change values from the srfit DiffpyStructureParSet
        s.Cu0.x.setValue(0.456)
        s.Cu0.U22.setValue(0.441)
        s.Cu0.B13.setValue(0.550)
        d = dsstru.lattice.dist(a1.xyz, a2.xyz)
        s.lattice.b.setValue(4.6)
        s.lattice.alpha.setValue(91.3)
        _testAtoms()
        _testLattice()
        # Make sure the distance changed
        self.assertNotEquals(d, dsstru.lattice.dist(a1.xyz, a2.xyz))
        return
Exemple #27
0
    def expandSuperCell(self, mno):
        """Perform supercell expansion for this structure and adjust
        constraints for positions and lattice parameters.  New lattice
        parameters are multiplied and fractional coordinates divided by
        corresponding multiplier.  New atoms are grouped with their source
        in the original cell.

        mno -- tuple or list of three positive integer cell multipliers along
        the a, b, c axis
        """
        # check argument
        if tuple(mno) == (1, 1, 1): return
        if min(mno) < 1:
            raise ControlValueError("mno must contain 3 positive integers")
        # back to business
        acd = self._popAtomConstraints()
        mnofloats = numpy.array(mno[:3], dtype=float)
        ijklist = [(i, j, k) for i in range(mno[0]) for j in range(mno[1])
                   for k in range(mno[2])]
        # build a list of new atoms
        newatoms = []
        for a in self.initial:
            for ijk in ijklist:
                adup = Atom(a)
                adup.xyz = (a.xyz + ijk) / mnofloats
                newatoms.append(adup)
                # does atom a have any constraint?
                if a not in acd: continue
                # add empty constraint dictionary for duplicate atom
                acd[adup] = {}
                for barevar, con in acd[a].iteritems():
                    formula = con.formula
                    if barevar in ("x", "y", "z"):
                        symidx = "xyz".index(barevar)
                        if ijk[symidx] != 0:
                            formula += " + %i" % ijk[symidx]
                        if mno[symidx] > 1:
                            formula = "(%s)/%.1f" % (formula, mno[symidx])
                            formula = re.sub(r'\((@\d+)\)', r'\1', formula)
                    # keep other formulas intact and add constraint
                    # for barevar of the duplicate atom
                    acd[adup][barevar] = Constraint(formula)
        # replace original atoms with newatoms
        self.initial[:] = newatoms
        for ai, an in zip(self.initial, newatoms):
            if an in acd:
                acd[ai] = acd[an]
        # and rebuild their constraints
        self._restoreAtomConstraints(acd)
        # take care of lattice parameters
        self.initial.lattice.setLatPar(a=mno[0] * self.initial.lattice.a,
                                       b=mno[1] * self.initial.lattice.b,
                                       c=mno[2] * self.initial.lattice.c)
        # adjust lattice constraints if present
        latvars = ("lat(1)", "lat(2)", "lat(3)")
        for var, multiplier in zip(latvars, mno):
            if var in self.constraints and multiplier > 1:
                con = self.constraints[var]
                formula = "%.0f*(%s)" % (multiplier, con.formula)
                formula = re.sub(r'\((@\d+)\)', r'\1', formula)
                con.formula = formula
        return
Exemple #28
0
def carbonzchain(n):
    "Helper function that returns a z-chain of Carbon atoms."
    from diffpy.Structure import Structure, Atom
    rv = Structure([Atom('C', [0, 0, z]) for z in range(n)])
    return rv