def train_model(classifier, train_csv, test_csv, model_file):

    train_set = digit_io.read_from_csv(train_csv)

    test_set = digit_io.read_from_csv(test_csv)

    assert train_set.ndim == 2

    assert test_set.ndim == 2

    data_train, target_train = train_set[0::, 1::], train_set[0::, 0]

    test_train, target_test = test_set[0::, 1::], test_set[0::, 0]

    # classifier = RandomForestClassifier(n_estimators=100)

    learn_model(classifier, data_train, test_train, target_train, target_test, model_file)
Exemple #2
0
def train_model(classifier, train_csv, test_csv, model_file):

    train_set = digit_io.read_from_csv(train_csv)

    test_set = digit_io.read_from_csv(test_csv)

    assert train_set.ndim == 2

    assert test_set.ndim == 2

    data_train, target_train = train_set[0::, 1::], train_set[0::, 0]

    test_train, target_test = test_set[0::, 1::], test_set[0::, 0]

    # classifier = RandomForestClassifier(n_estimators=100)

    learn_model(classifier, data_train, test_train, target_train, target_test,
                model_file)
Exemple #3
0
def split_entity_dataset():

    train_csv_path = "../data/train.csv"

    data_set = digit_io.read_from_csv(train_csv_path)

    train_set, test_set = data_split(data_set)

    digit_io.write_to_csv(train_set, '../data/training/train.csv')

    digit_io.write_to_csv(test_set, '../data/training/test.csv')
def split_entity_dataset():

    train_csv_path = "../data/train.csv"

    data_set = digit_io.read_from_csv(train_csv_path)

    train_set, test_set = data_split(data_set)

    digit_io.write_to_csv(train_set, '../data/training/train.csv')

    digit_io.write_to_csv(test_set, '../data/training/test.csv')
Exemple #5
0
def predict(model_file, test_file, filename):

    classifier = load_model(model_file)

    test = digit_io.read_from_csv(test_file)

    predicted = classifier.predict(test)

    if filename != None:
        # digit_io.write_to_csv(predicted, filename, header=None)
        digit_io.write_predicted_result(predicted, filename)
    else:
        print predicted
Exemple #6
0
def extract_small_dataset():

    train_csv_path = "../data/train.csv"

    data_set = digit_io.read_from_csv(train_csv_path)

    train_set, test_set = data_split(data_set)

    small_train, small_test = data_split(test_set)

    digit_io.write_to_csv(small_train, "../data/training/small_train.csv")

    digit_io.write_to_csv(small_test, "../data/training/small_test.csv")
def predict(model_file, test_file, filename) :

    classifier = load_model(model_file)

    test = digit_io.read_from_csv(test_file)

    predicted = classifier.predict(test)

    if filename != None:
        # digit_io.write_to_csv(predicted, filename, header=None)
        digit_io.write_predicted_result(predicted, filename)
    else:
        print predicted
def extract_small_dataset():

    train_csv_path = "../data/train.csv"

    data_set = digit_io.read_from_csv(train_csv_path)

    train_set, test_set = data_split(data_set)

    small_train, small_test = data_split(test_set)

    digit_io.write_to_csv(small_train, "../data/training/small_train.csv")

    digit_io.write_to_csv(small_test, "../data/training/small_test.csv")