def test03(self): # Test complex/complex version with varying input omega = 2 gain_omega = 0.01 mu = 0.25 gain_mu = 0.1 omega_rel_lim = 0.0001 self.test = digital_swig.clock_recovery_mm_cc(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 1000 * [complex(1, 1), complex(1, 1), complex(-1, -1), complex(-1, -1)] self.src = gr.vector_source_c(data, False) self.snk = gr.vector_sink_c() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 1000 * [complex(-1.2, -1.2), complex(1.2, 1.2)] dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 100 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp :] dst_data = dst_data[len_d - Ncmp :] # print expected_result # print dst_data self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)
def test01(self): # Test complex/complex version omega = 2 gain_omega = 0.001 mu = 0.5 gain_mu = 0.01 omega_rel_lim = 0.001 self.test = digital.clock_recovery_mm_cc(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 100*[complex(1, 1),] self.src = blocks.vector_source_c(data, False) self.snk = blocks.vector_sink_c() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 100*[complex(0.99972, 0.99972)] # doesn't quite get to 1.0 dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 30 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp:] dst_data = dst_data[len_d - Ncmp:] #print expected_result #print dst_data self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)
def test01(self): # Test complex/complex version omega = 2 gain_omega = 0.001 mu = 0.5 gain_mu = 0.01 omega_rel_lim = 0.001 self.test = digital_swig.clock_recovery_mm_cc(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 100 * [complex(1, 1)] self.src = gr.vector_source_c(data, False) self.snk = gr.vector_sink_c() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 100 * [complex(0.99972, 0.99972)] # doesn't quite get to 1.0 dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 30 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp :] dst_data = dst_data[len_d - Ncmp :] # print expected_result # print dst_data self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 5)
def test03(self): # Test complex/complex version with varying input omega = 2 gain_omega = 0.01 mu = 0.25 gain_mu = 0.1 omega_rel_lim = 0.0001 self.test = digital.clock_recovery_mm_cc(omega, gain_omega, mu, gain_mu, omega_rel_lim) data = 1000*[complex(1, 1), complex(1, 1), complex(-1, -1), complex(-1, -1)] self.src = blocks.vector_source_c(data, False) self.snk = blocks.vector_sink_c() self.tb.connect(self.src, self.test, self.snk) self.tb.run() expected_result = 1000*[complex(-1.2, -1.2), complex(1.2, 1.2)] dst_data = self.snk.data() # Only compare last Ncmp samples Ncmp = 100 len_e = len(expected_result) len_d = len(dst_data) expected_result = expected_result[len_e - Ncmp:] dst_data = dst_data[len_d - Ncmp:] #print expected_result #print dst_data self.assertComplexTuplesAlmostEqual(expected_result, dst_data, 1)