def solve(data): grid = data base = grid for j in range(1, 5): appendix = base + j appendix[appendix > 9] -= 9 grid = np.concatenate((grid, appendix), axis = 0) base = grid for i in range(1, 5): appendix = base + i appendix[appendix > 9] -= 9 grid = np.concatenate((grid, appendix), axis = 1) h, w = np.shape(grid) graph = Graph() for j in range(0, h): for a, b in pairwise(range(0, w)): graph.add_edge(j * h + a, j * h + b, grid[j][b]) graph.add_edge(j * h + b, j * h + a, grid[j][a]) for i in range(0, w): for a, b in pairwise(range(0, h)): graph.add_edge(a * h + i, b * h + i, grid[b][i]) graph.add_edge(b * h + i, a * h + i, grid[a][i]) return find_path(graph, 0, h * w - 1).total_cost
def get_sorted_map_path_data(map_data: dict) -> dict: """ 获取地图下各节点到目标节点的最短路径数据 Keyword arguments: map_data -- 地图节点数据 """ graph = Graph() sorted_path_data = {} for node in map_data.keys(): for target in map_data[node]: graph.add_edge(node, target, {"cost": map_data[node][target]}) cost_func = lambda u, v, e, prev_e: e["cost"] for node in map_data.keys(): new_data = {node: {}} for target in map_data.keys(): if target != node: find_path_data = find_path(graph, node, target, cost_func=cost_func) new_data[node].update({ target: { "Path": find_path_data.nodes[1:], "Time": find_path_data.costs, } }) sorted_path_data.update(new_data) return sorted_path_data
def dijkstra_planning(self): graph = Graph() temp_nodes = self.nodes[:] temp_nodes.pop(0) k = 0 for i in range(len(self.nodes)): k = k + 1 for j in range(len(temp_nodes)): node_a = self.nodes[i] node_b = temp_nodes[j] if np.linalg.norm(node_a - node_b) != 0: print("add edge:", i, j + k) graph.add_edge(i, j + k, np.linalg.norm(node_a - node_b)) if temp_nodes: temp_nodes.pop(0) print("done") path = find_path(graph, 1, 3) print("path:", path) # if __name__ == "__main__": # test_nodes = [np.array([21, 34]), # np.array([45, 28]), # np.array([76, 14]), # np.array([12, 56]), # np.array([48, 32])] # # motion_planner = Planner(test_nodes) # motion_planner.dynamic_programming()
def crea_matrice_distanze(dist): initial_matr = np.array(dist) print initial_matr matr = initial_matr.copy() # dict_matr = {(partenza, arrivi): lunghezza for partenza, arrivi in enumerate(dist) for arrivo, lunghezza in # enumerate(arrivi)} graph = Graph() for partenza, arrivi in enumerate(dist): for arrivo, lunghezza in enumerate(arrivi): if lunghezza >= 0: graph.add_edge(partenza, arrivo, {'cost': lunghezza}) cost_func = lambda u, v, e, prev_e: e['cost'] for partenza, arrivi in enumerate(dist): for arrivo in range(len(arrivi)): if partenza == arrivo: matr[partenza, arrivo] = -1 else: try: min_dist = find_path(graph, partenza, arrivo, cost_func=cost_func)[3] matr[partenza, arrivo] = min_dist except Exception as e: matr[partenza, arrivo] = -1 print "matr ditanze\n", matr return matr
def get_sorted_map_path_data( map_data: Dict[str, Dict[str, int]] ) -> Dict[str, Dict[str, game_type.TargetPath]]: """ 获取地图下各节点到目标节点的最短路径数据 Keyword arguments: map_data -- 地图节点数据 当前节点:可通行节点:所需时间 Return arguments: Dict[int,Dict[int,game_type.TargetPath]] -- 最短路径数据 当前节点:目标节点:路径对象 """ graph = Graph() sorted_path_data = {} for node in map_data.keys(): for target in map_data[node]: graph.add_edge(node, target, {"cost": map_data[node][target]}) cost_func = lambda u, v, e, prev_e: e["cost"] for node in map_data.keys(): new_data = {node: {}} for target in map_data.keys(): if target != node: find_path_data = find_path(graph, node, target, cost_func=cost_func) target_path = game_type.TargetPath() target_path.path = find_path_data.nodes[1:] target_path.time = find_path_data.costs new_data[node][target] = target_path sorted_path_data.update(new_data) return sorted_path_data
def graph3(self): graph = Graph({ 'a': { 'b': 10, 'c': 100, 'd': 1 }, 'b': { 'c': 10 }, 'd': { 'b': 1, 'e': 1 }, 'e': { 'f': 1 }, }) graph.add_node('f', {'c': 1}) graph['f'] = {'c': 1} graph.add_edge('f', 'c', 1) graph.add_edge('g', 'b', 1) nodes = list(graph) nodes.sort() self.assertEqual(nodes, ['a', 'b', 'd', 'e', 'f', 'g']) incoming = graph.get_incoming('c') incoming_nodes = list(incoming.keys()) incoming_nodes.sort() self.assertEqual(incoming_nodes, ['a', 'b', 'f']) return graph
def find_conversions(source, target, versions_graph): """ This finds the minimum number of version upgrades required to reach the target version. :param source: source version :param target: target version :param versions_graph: graph to fetch update path from :return: list of conversions in order of execution """ graph = Graph() for source_version, target_version in versions_graph.query( """SELECT ?source_version ?target_version{ ?source_version version:convertsTo ?target_version . }"""): graph.add_edge(str(source_version), str(target_version), {"conversions": 1}) # Find the shortest path res = find_path( graph, str(source), str(target), cost_func=lambda u, v, e, prev_e: e["conversions"], ) # Create and return the conversions conversions = [] print(" -> ".join(res.nodes)) current = source for node in res.nodes: conversions.append((current, node)) current = node return conversions[1:]
def findBestPath(self, src, dst): graph = Graph() for node1 in costBetweenNodes.keys(): for node2 in costBetweenNodes[node1].keys(): graph.add_edge(node1, node2, {'cost': costBetweenNodes[node1][node2]}) cost_func = lambda u, v, e, prev_e: e['cost'] return find_path(graph, src, dst, cost_func=cost_func).nodes
def make_graph(self): con = pymysql.connect(host='localhost', user='******', password='******', db='drive2', charset='utf8') curs = con.cursor() graph = Graph() sql = "select nodeid from drive2.c1_node" sql2 = "select tonode, length, format(speed,0) from drive2.a3_link, jcm_drive.jcm_a3_link where fromnode = " curs.execute(sql) rows = curs.fetchall() for i in rows: nodeid = list(map(lambda x: x, i)) curs.execute(sql2 + "'" + nodeid[0] + "';") rows = curs.fetchall() if rows is None: continue else: for item in list(rows): cost = item[1] / int(item[2]) graph.add_edge(i[0], item[0], cost) con.close() return graph
def getSortedMapPathData(mapData: dict) -> dict: ''' 获取地图下各节点到目标节点的最短路径数据 Keyword arguments: mapData -- 地图节点数据 ''' graph = Graph() sortedPathData = {} for node in mapData.keys(): for target in mapData[node]: graph.add_edge(node, target, {'cost': mapData[node][target]}) cost_func = lambda u, v, e, prev_e: e['cost'] for node in mapData.keys(): newData = {node: {}} for target in mapData.keys(): if target != node: findPathData = find_path(graph, node, target, cost_func=cost_func) newData[node].update({ target: { "Path": findPathData.nodes[1:], "Time": findPathData.costs } }) sortedPathData.update(newData) return sortedPathData
def shortestPathAStar(start_ind, goal_ind): global R # R[0] is the node for the start configuration # R[1] is the node for the goal configuration # each node has edges in the form: self.edges = [] List of tuples (node_id, dist) # loop through our graph and convert it to a nice format for dijkstar graph = Graph() for node in R: for edge in node.edges: graph.add_edge(node.id, edge[0], edge[1]) cfg_array = [] # catch path not found exception try: pathinfo = find_path(graph, start_ind, goal_ind) except: print('Could NOT find a path from start to goal') return cfg_array # get the configurations from each node in this found path for node_id in pathinfo.nodes: cfg_array.append(R[node_id].cfg) return cfg_array
def sol_6_b(data_str): orbit_tree = read_orbits(data_str) g = Graph() for planet in orbit_tree: g.add_edge(orbit_tree[planet], planet, 1) g.add_edge(planet, orbit_tree[planet], 1) path = find_path(g, "YOU", orbit_tree["SAN"]) return path.total_cost - 1
def _get_graph(nets_ids, links): graph = Graph() for link in links: src_connectable_id = link['src_connectable_id'] dst_connectable_id = link['dst_connectable_id'] if src_connectable_id in nets_ids and dst_connectable_id in nets_ids: graph.add_edge(src_connectable_id, dst_connectable_id, 100) return graph
def setUpGraph(self): graph = Graph() for camino in Camino.objects.all(): graph.add_edge( camino.desde.pk, camino.hasta.pk, {'cost': camino.distancia}) graph.add_edge( camino.hasta.pk, camino.desde.pk, {'cost': camino.distancia}) return graph
def dijkstra(d): g = Graph() for i in range(len(d)): for j in range(len(d[i])): dirs = ((i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)) for x, y in dirs: if 0 <= x < len(d) and 0 <= y < len(d[i]): g.add_edge((i, j), (x, y), d[x][y]) return find_path(g, (0, 0), (len(d) - 1, len(d[0]) - 1)).total_cost
def graph_search(self): # set up the graph graph = Graph() self.nodes = 0 self.total_cost = 0 # add edges for i in range(len(self.TE)): # pdb.set_trace() edge = self.TE[i] dist = math.sqrt((edge[0][0] - edge[1][0])**2 + (edge[0][1] - edge[1][1])**2) # pdb.set_trace() # find vertex from self.V that matches the edges vertex1 = self.TV.index(edge[0]) vertex2 = self.TV.index(edge[1]) # pdb.set_trace() graph.add_edge(vertex1, vertex2, dist) # pdb.set_trace() temp = find_path(graph, 0, len(self.TV) - 1) self.nodes = temp[0] self.total_cost = temp[3] # now that we have the final path of the robot, we need to extract the ideal robot positions # interpolate all of the vertices to make a series of points that the robot can follow self.robot_positions = [] # iterate over each node in the final path and connect between them for i in range(len(self.nodes) - 1): # take the first and second nodes from_node = self.TV[self.nodes[i]] to_node = self.TV[self.nodes[i + 1]] # take each edge and interpolate a distance equivalent 1/10th of the robot speed per second diff_x = to_node[0] - from_node[0] diff_y = to_node[1] - from_node[1] dist_speed = self.speed * 1 / 10 # m/s * s = m # now find number of points from distance between points and speed dist_covered = math.sqrt(diff_x**2 + diff_y**2) num_points = round(dist_covered / dist_speed) # interpolate using these points x_int = from_node[0] y_int = from_node[1] interpolateds = [x_int, y_int] for i in range(num_points): # append the robot positions self.robot_positions.append(interpolateds) # add the points in by moving the direction amount calculated in x and y x_int = interpolateds[0] + diff_x / num_points y_int = interpolateds[1] + diff_y / num_points interpolateds = [x_int, y_int] # append goal if self.solution_found == 1: self.robot_positions.append(self.qgoal) # self.robot_positions.append(np.linspace(edge[0],edge[1], num = self.speed/50,endpoint=True,retstep=True)) return self.nodes, self.total_cost
def test_initialise_dijk_grid_with_no_blocks(self): self.grid.width, self.grid.height, self.grid.blocks = 2, 2, [] self.grid.initialise_dijk_grid() test_grid = Graph() for i in range(2): test_grid.add_edge((i, 0), (i, 1), 1) test_grid.add_edge((i, 1), (i, 0), 1) test_grid.add_edge((0, i), (1, i), 1) test_grid.add_edge((1, i), (0, i), 1) self.assertEqual(self.grid.dijk_grid, test_grid)
def graph_gen( df_edge ): #génère un graph simple des liens entre les tables sans tenir compte des colones graph = Graph() for x in df_edge.index: graph.add_edge(df_edge.loc[x, 'table_FK_id'], df_edge.loc[x, 'tablePK_id'], {'cost': 1}) graph.add_edge(df_edge.loc[x, 'tablePK_id'], df_edge.loc[x, 'table_FK_id'], {'cost': 1}) return graph
def make_graph(self): graph = Graph() for x, y in product(range(self.width), range(self.height)): if isinstance(self.grid[x][y], Floor) or isinstance(self.grid[x][y], Flag): for i, j in [(x + i, y + j) for i, j in ((-1, 0), (1, 0), (0, 1), (0, -1))]: if isinstance(self.grid[i][j], Floor) or isinstance(self.grid[i][j], Flag): graph.add_edge((x, y), (i, j), 1) return graph
def test_initialise_dijk_grid_simple(self): self.grid.width, self.grid.height, self.grid.blocks = 2, 2, [(1, 1)] self.grid.initialise_dijk_grid() test_grid = Graph() for i in range(2): test_grid.add_edge((i, 0), (i, 1), 1) test_grid.add_edge((i, 1), (i, 0), 1) test_grid.add_edge((0, i), (1, i), 1) test_grid.add_edge((1, i), (0, i), 1) test_grid.remove_node((1, 1)) self.assertEqual(self.grid.dijk_grid, test_grid)
def main(): models.Base.metadata.create_all(engine) logging.info('Created database schema.') session = Session() add_random_animals_of_type_to_session(session, create_lion, config.LION_COUNT) add_random_animals_of_type_to_session(session, create_hippopotamus, config.HIPPOPOTAMUS_COUNT) add_random_animals_of_type_to_session(session, create_antelope, config.ANTELOPE_COUNT) add_random_animals_of_type_to_session(session, create_hyena, config.HYENA_COUNT) all_animals = session.query(models.Animal).all() friendship_count = 0 while friendship_count < config.MAX_FRIENDSHIP_COUNT: random_animal_1 = all_animals[randint(0, len(all_animals) - 1)] random_animal_2 = all_animals[randint(0, len(all_animals) - 1)] if can_become_friends(random_animal_1, random_animal_2): logging.info('Creating friendship between: {}, {}'.format( random_animal_1, random_animal_2)) random_animal_1.friends.append(random_animal_2) random_animal_2.friends.append(random_animal_1) session.add(random_animal_1) session.add(random_animal_2) friendship_count += 1 session.commit() hungriest_lion = get_hungriest_lion(session) logging.info('Hungriest lion is: {}'.format(hungriest_lion)) slowest_antelope = get_slowest_antelope(session) logging.info('Slowest antelope is: {}'.format(slowest_antelope)) graph = Graph() for animal in all_animals: for friend in animal.friends: graph.add_edge(animal.id, friend.id) try: shortest_path = find_path(graph, hungriest_lion.id, slowest_antelope.id, cost_func=get_cost) except NoPathError: logging.warn('The lion stays hungry today') else: logging.info( 'Shortest path to slowest antelope is through animal ids: {}'. format(shortest_path[0]))
def parse_distance_matrix(csv_reader, cost_function): # Ignore last column for trailhead. peaks = csv_reader.__next__()[1:-1] distances = {p: {p: None for p in peaks} for p in peaks} trailhead_distances = {p: None for p in peaks + [_TRAILHEAD_NAME]} for row in csv_reader: if not is_peak(row[0]): continue # Note: trailhead distances are read as Peak > Trailhead, but here # stored as Trailhead > Peak, so they need to be reversed below. trailhead_distances[row[0]] = _parse_distance_gain_loss_string(row[-1]) i = 0 for d in row[1:-1]: distances[row[0]][peaks[i]] = _parse_distance_gain_loss_string(d) i += 1 # Add back distances for p1 in distances: for p2 in distances[p1]: if distances[p1][p2] is not None and distances[p2][p1] is None: distances[p2][p1] = ( distances[p1][p2][0], distances[p1][p2][2], # swap climb/desc distances[p1][p2][1]) # Build graph for shortest path computation g = Graph() for p1 in distances: for p2 in distances[p1]: g.add_edge(p1, p2, distances[p1][p2]) def internal_cost_function(_0, _1, x, _2): return cost_function(x) for p1 in distances: for p2 in distances[p1]: distances[p1][p2] = tuple( sum(x) for x in zip(*find_path( g, p1, p2, cost_func=internal_cost_function).edges)) # Trailhead has to be added after shortest path computation to make sure # shortest parths don't go through the artificial trailhead. distances[_TRAILHEAD_NAME] = {} for p in trailhead_distances: d = trailhead_distances[p] if d is None: d = (1e9, 1e9, 1e9) distances[_TRAILHEAD_NAME][p] = (d[0], d[2], d[1]) distances[p].update({_TRAILHEAD_NAME: (d[0], d[1], d[2])}) # Add self distance for p1 in distances: distances[p1][p1] = (0, 0, 0) return distances
def find_closest(game_map, width, height, player, players): # is anyone in range if so don't move inRange = [] for d in [(0, -1), (-1, 0), (1, 0), (0, 1)]: key = "{}_{}".format(player.x + d[0], player.y + d[1]) if key in game_map and game_map[key] not in ['.', '#', player.type]: enemy = list( filter( lambda x: x.x == player.x + d[0] and x.y == player.y + d[ 1], players))[0] return [0, enemy.x, enemy.y, []] # build a map graph = Graph() for x in range(0, width): for y in range(0, height): for d in [(0, -1), (-1, 0), (1, 0), (0, 1)]: key = "{}_{}".format(x + d[0], y + d[1]) if key in game_map and game_map[key] == '.': graph.add_edge("{}_{}".format(x, y), key, 1) path_data = [] for p in players: # don't attack your friends (or self) if p.type == player.type: continue # don't attack dead people if not p.alive: continue # look around the target for a free space for d in [(0, -1), (-1, 0), (1, 0), (0, 1)]: key = "{}_{}".format(p.x + d[0], p.y + d[1]) # if this block is valid and empty if key in game_map and game_map[key] == '.': try: pdata = find_path(graph, "{}_{}".format(player.x, player.y), "{}_{}".format(p.x + d[0], p.y + d[1])) path_data.append([ pdata.total_cost, p.x + d[0], p.y + d[1], pdata.nodes, p.reading ]) except: continue # sort by the shortest distance, and then the lowest y value, and then the lowest x value path_data = sorted(path_data, key=lambda x: (x[0], x[4])) if len(path_data) > 0: return path_data[0] else: return None
def make_graph(grid): utils.logger.info("Making graph...") graph = Graph() for x in range(len(grid)): for y, cell in enumerate(grid[x]): neighbors = get_neighbors(grid, x, y) for neighbor in neighbors: graph.add_edge( (x, y), (neighbor["x"], neighbor["y"]), ) return graph
def Init_Graph(Node_list, Edge_list): graph_orig = Graph() # Build Graph with specified Nodes & Edges for nodes in Node_list: graph_orig.add_node(nodes) for edges in Edge_list: n1, n2 = edges graph_orig.add_edge(n1, n2, {'cost':1}) graph_orig.add_edge(n2, n1, {'cost':1}) return graph_orig
def solve_graph(): global maze, maze_cost, pacmanpos, world, goal_state graph = Graph() for j in range(0, height): for i in range(0, width): if maze[j][i] != 1: #arriba if (maze[j-1][i] != 1) and (j-1 > 0): xi = str((j,i)) xj = str((j-1,i)) c = maze_cost[j-1][i] graph.add_edge(xi,xj,{'cost':c}) #print(xi+' - '+xj) #abajo if (maze[j+1][i] != 1) and (j+1 < height): xi = str((j,i)) xj = str((j+1,i)) c = maze_cost[j+1][i] graph.add_edge(xi,xj,{'cost':c}) #print(xi+' - '+xj) #derecha if (maze[j][i+1] != 1) and (i+1 < width): xi = str((j,i)) xj = str((j,i+1)) c = maze_cost[j][i+1] graph.add_edge(xi,xj,{'cost':c}) #print(xi+' - '+xj) #izquierda if (maze[j][i-1] != 1) and (i-1 > 0): xi = str((j,i)) xj = str((j,i-1)) c = maze_cost[j][i-1] graph.add_edge(xi,xj,{'cost':c}) #print(xi+' - '+xj) cost_func = lambda u, v, e, prev_e: e['cost'] pacman = worldToGrid(pacmanpos.pacmanPos.x, pacmanpos.pacmanPos.y) start_state = (pacman['y'], pacman['x']) #start_state = (25,14) # goal_state = closest_bonus() # print(goal_state) #goal_state = (25,26) path = find_path(graph, str(start_state), str(goal_state), cost_func=cost_func) # print(path.nodes) if len(path.nodes)>1: next_state = eval(path.nodes[1]) aux = (start_state[0]-next_state[0], start_state[1]-next_state[1]) else: print('yuca') return 4 #print(str(start_state)+' '+str(next_state)) if aux == (1,0): return 0 if aux == (-1,0): return 1 if aux == (0,-1): return 2 if aux == (0,1): return 3
def find_shortest_path(edges, vertex, s_i, e_i): # print(s_i) graph = Graph() for edge in edges: a = vertex.index(edge[0]) b = vertex.index(edge[1]) dist = np.linalg.norm(np.array(edge[0]) - np.array(edge[1])) # print(a, b, dist) graph.add_edge(a, b, {'cost': dist}) graph.add_edge(b, a, {'cost': dist}) cost_func = lambda u, v, e, prev_e: e['cost'] shortest = find_path(graph, s_i, e_i, cost_func=cost_func)[0] for i in range(len(shortest) - 1): point1 = vertex[shortest[i]] point2 = vertex[shortest[i + 1]] plt.plot([point1[0], point2[0]], [point1[1], point2[1]], linewidth=2, color='g')
def dist_mat(train_mat, test_mat, k): # construct a weighted graph mat = graph_knn(train_mat, test_mat, k) n = mat.shape[0] graph = Graph() list((graph.add_edge(i, j, {'cost': mat[i, j]}) for i, j in product(range(n), range(n)) if i != j and mat[i, j] != max_dis)) if graph is None: return cost_func = lambda u, v, e, prev_e: e['cost'] mat = np.zeros((n, n)) # the shortest path from node i to node j is the distance between i and j def dis(i): single_short_path = single_source_shortest_paths(graph, i, cost_func=cost_func) for j in range(n): if j != i: mat[i, j] = extract_shortest_path(single_short_path, j) else: mat[i, j] = 0 list((dis(i) for i in range(n))) return mat
def index(request): if request.POST['tipo_algoritmo'] == 'dijkstra': graph = Graph() origen = request.POST['inicio'] fin = request.POST['final'] with open( '/Users/karelsalcedo/Code/AI/AlgoritmosPract2/BACKEND/practica2/Aristas.json' ) as file: data2 = json.load(file) aristas = data2 for arti in aristas: graph.add_edge(arti[0], arti[1], {'cost': arti[2]}) print(graph) cost_func = lambda u, v, e, prev_e: e['cost'] final = find_path(graph, int(origen), int(fin), cost_func=cost_func) data = { 'status': '100', 'ruta': final, } return JsonResponse(data) elif request.POST['tipo_algoritmo'] == 'prim': data = { 'status': '100', 'ruta': '', } return JsonResponse(data) elif request.POST['tipo_algoritmo'] == 'kruskal': data = { 'status': '100', 'ruta': ['a'], } return JsonResponse(data) else: data = { 'status': '200', 'msg': 'El algoritmo no esta registrado.', } return JsonResponse(data)
def calculate_path(self): graph = Graph() for i in range(len(self.links)): graph.add_edge(self.links[i][0], self.links[i][1], {'cost': self.links[i][2]}) cost_func = lambda u, v, e, prev_e: e['cost'] #print self.links result = find_path(graph, meta_data.source_id, meta_data.destination_id, cost_func=cost_func) route = result[0] # clear link list del self.crn_manager.role.links[:] # check and reply if meta_data.INF in result[2]: route = [] self.routing_request_log.append([self.crn_manager.get_virtual_time(), 0]) else: self.routing_request_log.append([self.crn_manager.get_virtual_time(), 1]) #self.crn_manager.route = route return route
def part_one(grid): from dijkstar import Graph, find_path mx, my = len(grid), len(grid[0]) graph = Graph() for i in range(len(grid)): for j in range(len(grid[0])): ns = get_neighbors(i, j, mx, my, forward_only=False) for n in ns: graph.add_edge((i, j), n, grid[n[0]][n[1]]) def cost_func(u, v, edge, prev_edge): return edge path = find_path(graph, (0, 0), (mx-1, my-1), cost_func=cost_func) #print_grid(grid, highlights=path.nodes) return path.total_cost
def get_disktra(self, dict_probabilities, logaritmico): # Return a Graph to apply djistra algorithm grafo = Graph() dict_of_graphs = dict() for clave_transicion in dict_probabilities.keys(): origen_destino = clave_transicion.split(";") origen = origen_destino[0] destino = origen_destino[1] valor_transicion = str(dict_probabilities.get(clave_transicion)) grafo.add_edge(origen, destino, int(float(valor_transicion) * 100)) for final_node in self.lista_nodos_finales: if logaritmico: dict_of_graphs[final_node] = find_path(grafo, "", final_node + '_l') else: dict_of_graphs[final_node] = find_path(grafo, "", final_node) return dict_of_graphs
def compute_path(adj_matrix, tx_missing_matrix, node1, node2, nodes): graph = Graph() # Update tx_missing_matrix so that we don't count txs missing by node1 source_missing_txs = tx_missing_matrix[node1] for cur_node in range(nodes): tx_missing_matrix[cur_node] = list( set(tx_missing_matrix[cur_node]) - set(source_missing_txs)) cur_node = 0 for cur_node in range(nodes): cur_node_peers = adj_matrix[cur_node] for peer in cur_node_peers: if tx_missing_matrix[peer] == []: graph.add_edge(cur_node, peer, {'cost': 0.5}) else: graph.add_edge(cur_node, peer, {'cost': 1.5}) cur_node += 1 cost_func = lambda u, v, e, prev_e: e['cost'] return find_path(graph, node1, node2, cost_func=cost_func), tx_missing_matrix
def steiner_tree(reader_cost, reader_od): matrix_cost = np.array(reader_cost) matrix_od = np.array(reader_od) graph = Graph() # ایجاد گراف دایجسترا for item in range(matrix_cost.shape[0]): graph.add_edge(matrix_cost[item, 0], matrix_cost[item, 1], matrix_cost[item, 2]) # ستون آخر ماتریس تقاضا(مجموع سفرهای تولید شده) را در لیست فرار بده list_max = [] for item in matrix_od[:, -1]: list_max.append(item) # ماکزیمم اول و دوم را در لیست ایجاد شده شناسایی کن first_max = max(list_max[0], list_max[1]) second_max = 0 for item in range(2, len(list_max)): if list_max[item] > first_max: second_max = first_max first_max = list_max[item] elif list_max[item] > second_max: second_max = list_max[item] # بین دو نقطه ماکزیمم، کوتاهترین مسیر را ایجاد کن steiner_outcome = find_path(graph, list_max.index(first_max), list_max.index(second_max)) steiner_route = steiner_outcome.nodes steiner_network.append(steiner_route) # مقدار نقطه های اول و دوم تقاضا را در ماتریس تقاضا برابر با صفر قرار بده matrix_od[list_max.index(first_max), -1] = 0 matrix_od[list_max.index(second_max), -1] = 0 #reader_cost=matrix_cost #reader_od=matrix_od # مشخص کن که تمام نقاط ماتریس تقاضا بررسی شده و برابر صفر قرارداده شده # مشخص کن بیش از یک نقطه تقاضا برای ایجاد مسیر باقی مانده است if np.count_nonzero(matrix_od[:, -1]) > 1: steiner_tree(reader_cost, matrix_od) return steiner_network
class Game(object): frame = 0 sync_frame = 0 def __init__(self): level_str = make_level() self.width = level_str.index('\n') self.height = level_str.count('\n') self.level = [] self.teams = set() self.players = set() self.projectiles = set() self.graph = Graph() self.starts = set() for y in range(0, self.height): row = [] for x in range(0, self.width): type_id = level_str[y * (self.width + 1) + x] row.append(Point( x=x, y=y, type_id=type_id, theme_id=('金' if type_id in 'iwX' else None), orientation=None )) self.level.append(row) for pt in self.all_points: if pt.type_id == 'X': self.starts.add(pt) self.set_node(pt) def set_node(self, pt): ptype = ptypes[pt.type_id] if ptype.layer == 'e': cost = 50 elif ptype.layer == 'd': cost = 6 elif ptype.layer == 'c': cost = 0.99 else: cost = 1 neighbors = [] if pt.x > 0: neighbors.append(self.level[pt.y][pt.x - 1]) if pt.x < self.width - 1: neighbors.append(self.level[pt.y][pt.x + 1]) if pt.y > 0: neighbors.append(self.level[pt.y - 1][pt.x]) if pt.y < self.height - 1: neighbors.append(self.level[pt.y + 1][pt.x]) for npt in neighbors: self.graph.add_edge((npt.x, npt.y), (pt.x, pt.y), cost) def find_path(self, pt1, pt2): def manhattan(u, v, edge, prev_edge): return abs(u[0] - v[0]) + abs(u[1] - v[1]) try: nodes, edges, costs, final_cost = find_path( self.graph, pt1, pt2, heuristic_func=manhattan ) result = [] f = self.frame for i, (x, y) in enumerate(nodes): ptype = ptypes[self.level[y][x].type_id] if ptype.layer in ('d', 'e'): return result if f > self.frame and self.check_conflict(f, x, y): if self.check_conflict((f + 1) % 1000, x, y): return result else: result.append(result[-1]) f += 1 result.append((x, y)) f += 1 return result except NoPathError: return [] def find_line(self, x, y, direction): path = [] layer = None destroy = False while not layer or layer not in ('c', 'd', 'e'): path.append((x, y)) if direction == 'l': x -= 1 if direction == 'r': x += 1 if direction == 'u': y -= 1 if direction == 'd': y += 1 layer = ptypes[self.level[y][x].type_id].layer if layer in ('c', 'd'): path.append((x, y)) destroy = True return path, destroy def check_conflict(self, frame, x, y): for player in self.players: if not player.plan: if player.x == x and player.y == y: return True else: continue if frame in player.plan: if player.plan[frame] == (x, y): return True elif player.target_x == x and player.target_y == y: return True def to_str(self): s = 'GRID ' for row in self.level: for pt in row: s += pt.type_id s += '\n' return s @property def all_points(self): for row in self.level: for c in row: yield c @asyncio.coroutine def tick(self): yield from asyncio.sleep(0.1) self.frame += 1 self.frame = self.frame % 1000 if self.frame % 100 == 0: self.sync_frame += 1 if self.sync_frame == 1: self.sync_frame = 0 yield from self.broadcast("TICK %s" % self.frame) for player in list(self.players): yield from player.tick(self.frame) for proj in list(self.projectiles): yield from self.check_collide(proj, player) for proj in list(self.projectiles): yield from proj.tick(self.frame) for proj2 in list(self.projectiles): yield from self.check_collide(proj2, proj) for player in list(self.players): yield from self.check_collide(proj, player) @asyncio.coroutine def check_collide(self, proj, obj): if proj.x != obj.x or proj.y != obj.y or proj.id == obj.id: return if isinstance(obj, Player) and proj.player.id == obj.id: return yield from self.remove_projectile(proj) if isinstance(obj, Projectile): yield from self.remove_projectile(obj) else: yield from obj.add_hp(-1) @asyncio.coroutine def process(self, player, data): if not data: return vals = data.split(" ") cmd, args = vals[0], vals[1:] fn = getattr(self, 'process_%s' % cmd.lower(), None) if fn: yield from fn(player, *args) @asyncio.coroutine def process_point(self, player, x, y, type_id, theme_id=None, orientation=None): pt = self.level[int(y)][int(x)] pt.type_id = type_id pt.theme_id = theme_id pt.orientation = orientation self.set_node(pt) yield from self.broadcast(pt.to_str()) @asyncio.coroutine def process_go(self, player, x, y): if player.set_target(self.frame, int(x), int(y)): yield from self.broadcast(player.path_str(self.frame)) @asyncio.coroutine def broadcast(self, msg): print(msg) for player in self.players: print("Sending to Player ", player.id) yield from player.send(msg) @asyncio.coroutine def new_player(self, client): player = Player(client, self) self.players.add(player) tstr = "THEMES" for theme_id, theme in themes.items(): if not theme.elemental: tstr += " %s" % theme_id yield from player.send(tstr) sstr = "SHIPS" for type_id, ptype in ptypes.items(): if type_id.isdigit(): sstr += " %s" % type_id yield from player.send(sstr) for team in self.teams: yield from player.send(team.to_str()) for pl in self.players: if not pl.active: continue yield from player.send(pl.to_str()) return player def start_player(self, player): player.active = True self.locate_player(player, initial=True) player.hp = 10 player.lives = 3 yield from self.send_initial(player) def locate_player(self, player, initial=False): if not initial: tx = player.x ty = player.y choices = player.team.starts else: if len(player.team.starts) == 0: ty = 0 if player.team.id == 1: tx = 0 elif player.team.id == 2: tx = self.width elif player.team.id == 3: tx = self.width / 2 else: tx = random.randint(0, self.width) else: tx = 0 ty = 0 for start in player.team.starts: tx += start.x ty += start.y tx /= len(player.team.starts) ty /= len(player.team.starts) choices = [] for i in range(0, int(len(self.starts) / 2)): start = None while start is None or start.theme_id != '金': start = random.choice(list(self.starts)) choices.append(start) choices = sorted( choices, key=lambda pt: abs(pt.x - tx) + abs(pt.y - ty) ) player.x = choices[0].x player.y = choices[0].y @asyncio.coroutine def remove_player(self, player): if player in self.players: self.players.remove(player) @asyncio.coroutine def process_fire(self, player, direction): proj = Projectile(player, direction, self) self.projectiles.add(proj) yield from self.broadcast(proj.to_str()) yield from self.broadcast(proj.path_str(self.frame)) @asyncio.coroutine def process_team(self, player, name, theme_id): for team in self.teams: if team.theme_id == theme_id: return team = Team(self, name, theme_id) self.teams.add(team) yield from self.broadcast(team.to_str()) @asyncio.coroutine def process_join(self, player, team_id): for team in self.teams: if str(team.id) == team_id: team.add_player(player) player.team = team if not player.team: raise Exception("Failed to find team") @asyncio.coroutine def process_ship(self, player, ship_id, name): player.type_id = ship_id player.name = name yield from self.start_player(player) @asyncio.coroutine def remove_projectile(self, projectile): if projectile in self.projectiles: self.projectiles.remove(projectile) @asyncio.coroutine def process_edit(self, player): yield from player.send(self.to_str()) @asyncio.coroutine def send_initial(self, player): yield from player.send(self.to_str()) yield from player.send(player.to_str(True)) yield from player.send("TICK %s" % self.frame) for pt in self.all_points: if pt.theme_id or pt.orientation: yield from player.send(pt.to_str()) for pl in self.players: if not pl.active: continue yield from player.send(pl.path_str(self.frame)) yield from self.broadcast(player.to_str())
def directed_and_guided_map_init (): graph = None cost_func = None graph = Graph() # 4 real beacons graph.add_edge(1, 2, {'cost': 3}) graph.add_edge(2, 1, {'cost': 3}) graph.add_edge(2, 3, {'cost': 4}) graph.add_edge(3, 2, {'cost': 4}) graph.add_edge(3, 4, {'cost': 2}) graph.add_edge(4, 3, {'cost': 2}) graph.add_edge(1, 7, {'cost': 4}) graph.add_edge(7, 1, {'cost': 4}) # 3 virtual beacons that does not actually exist graph.add_edge(3, 4, {'cost': 5}) graph.add_edge(4, 3, {'cost': 5}) graph.add_edge(3, 5, {'cost': 5}) graph.add_edge(5, 3, {'cost': 5}) graph.add_edge(2, 5, {'cost': 6}) graph.add_edge(5, 2, {'cost': 6}) graph.add_edge(1, 6, {'cost': 7}) graph.add_edge(6, 1, {'cost': 7}) cost_func = lambda u, v, e, prev_e: e['cost'] return graph, cost_func
class House3DUtils(): def __init__( self, env, rotation_sensitivity=9, move_sensitivity=0.5, build_graph=False, graph_dir='/path/to/3d-graphs', target_obj_conn_map_dir='/path/to/target_obj_connmaps', debug=True, load_semantic_classes=True, collision_reward=0.0, success_reward=1.0, dist_reward_scale=0.005, seeing_rwd=False): self.env = env self.debug = debug self.rotation_sensitivity = rotation_sensitivity self.move_sensitivity = move_sensitivity self.angles = [x for x in range(-180, 180, self.rotation_sensitivity)] self.angle_strings = {1: 'right', -1: 'left'} self.dirs, self.angle_map = self.calibrate_steps(reset=True) self.move_multiplier = self.move_sensitivity / np.array([np.abs(x).sum() for x in self.dirs]).mean() self.graph_dir = graph_dir self.graph = None self.target_obj_conn_map_dir = target_obj_conn_map_dir if build_graph == True: if os.path.exists( os.path.join(graph_dir, self.env.house.house['id'] + '.pkl')): self.load_graph( os.path.join(graph_dir, self.env.house.house['id'] + '.pkl')) else: self.build_graph( save_path=os.path.join( graph_dir, self.env.house.house['id'] + '.pkl')) self.rooms, self.objects = self._parse() self.collision_reward = collision_reward self.success_reward = success_reward self.dist_reward_scale = dist_reward_scale self.seeing_rwd = seeing_rwd if load_semantic_classes == True: self._load_semantic_classes() # Shortest paths are computed in 1000 x 1000 grid coordinates. # One step in the SUNCG continuous coordinate system however, can be # multiple grids in the grid coordinate system (since turns aren't 90 deg). # So even though the grid shortest path is fine-grained, # an equivalent best-fit path in SUNCG continuous coordinates # has to be computed by simulating steps. Sucks, but yeah. # # For now, we first explicitly calibrate how many steps in the gridworld # correspond to one step in continuous world, across all directions def calibrate_steps(self, reset=True): mults, angle_map = [], {} cx, cy = self.env.house.to_coor(50, 50) if reset == True: self.env.reset(x=cx, y=cy) for i in range(len(self.angles)): yaw = self.angles[i] self.env.cam.yaw = yaw self.env.cam.updateDirection() x1, y1 = self.env.house.to_grid(self.env.cam.pos.x, self.env.cam.pos.z) pos = self.env.cam.pos pos = pos + self.env.cam.front * self.move_sensitivity x2, y2 = self.env.house.to_grid(pos.x, pos.z) mult = np.array([x2, y2]) - np.array([x1, y1]) mult = (mult[0], mult[1]) angle_map[mult] = yaw mults.append(mult) return mults, angle_map # 0: forward # 1: left # 2: right # 3: stop # # returns observation, reward, done, info def step(self, action, step_reward=False): if action not in [0, 1, 2, 3]: raise IndexError if step_reward == True: pos = self.env.cam.pos x1, y1 = self.env.house.to_grid(self.env.cam.pos.x, self.env.cam.pos.z) init_target_dist = self.env.house.connMap[x1, y1] reward = 0 done = False if action == 0: mv = self.env.move_forward( dist_fwd=self.move_sensitivity, dist_hor=0) obs = self.env.render() if mv == False: # collision reward -= self.collision_reward elif mv != False and step_reward == True: # evaluate connMap dist here x2, y2 = self.env.house.to_grid(self.env.cam.pos.x, self.env.cam.pos.z) final_target_dist = self.env.house.connMap[x2, y2] reward += self.dist_reward_scale * ((init_target_dist - final_target_dist) / np.abs( self.dirs[self.angles.index(self.env.cam.yaw % 180)]).sum()) elif action == 1: self.env.rotate(-self.rotation_sensitivity) obs = self.env.render() elif action == 2: self.env.rotate(self.rotation_sensitivity) obs = self.env.render() elif action == 3: done = True obs = self.env.render() return obs, reward, done # pos: [x, y, z, yaw], or objrender.Vec3 def get_dist_to_target(self, pos): if isinstance(pos, Vec3) == True: x, y = self.env.house.to_grid(pos.x, pos.z) else: x, y = self.env.house.to_grid(pos[0], pos[2]) dist = self.env.house.connMap[x, y] return self.move_multiplier * dist def is_inside_room(self, pos, room): if isinstance(pos, Vec3) == True: x = pos.x y = pos.z else: x = pos[0] y = pos[2] if x >= room['bbox']['min'][0] and x <= room['bbox']['max'][0] and \ y >= room['bbox']['min'][2] and y <= room['bbox']['max'][2]: return True return False # takes 200-300 seconds(!) when rotation_sensitivity == 9 def build_graph(self, save_path=None): import time start_time = time.time() collide_res = self.env.house.n_row from dijkstar import Graph visit = dict() self.graph = Graph() self.mock_obs_map = np.zeros( (collide_res + 1, collide_res + 1), dtype=np.uint8) self.mock_obs_map[np.where(self.env.house.connMap == -1)] = 1 for x in range(collide_res + 1): for y in range(collide_res + 1): pos = (x, y) if self.env.house.canMove(x, y) and pos not in visit: que = [pos] visit[pos] = True ptr = 0 while ptr < len(que): cx, cy = que[ptr] ptr += 1 # add all angles for (cx, cy) here # connect first and last for ang in range(len(self.angles) - 1): self.graph.add_edge((cx, cy, self.angles[ang]), (cx, cy, self.angles[ang + 1]), { 'cost': 1 }) self.graph.add_edge((cx, cy, self.angles[ang + 1]), (cx, cy, self.angles[ang]), { 'cost': 1 }) self.graph.add_edge((cx, cy, self.angles[-1]), (cx, cy, self.angles[0]), { 'cost': 1 }) self.graph.add_edge((cx, cy, self.angles[0]), (cx, cy, self.angles[-1]), { 'cost': 1 }) for deti in range(len(self.dirs)): det = self.dirs[deti] tx, ty = cx + det[0], cy + det[1] if (self.env.house.inside(tx, ty) and self.mock_obs_map[min(cx, tx):max(cx, tx)+1, min(cy, ty):max(cy, ty)+1].sum() == 0): # make changes here to add edges for angle increments as well # # cost = 1 from one angle to the next, # and connect first and last # this would be for different angles for same tx, ty # # then there would be connections for same angle # and from (cx, cy) to (tx, ty) self.graph.add_edge( (cx, cy, self.angle_map[self.dirs[deti]]), (tx, ty, self.angle_map[self.dirs[deti]]), { 'cost': 1 }) tp = (tx, ty) if tp not in visit: visit[tp] = True que.append(tp) if self.debug == True: print("--- %s seconds to build the graph ---" % (time.time() - start_time)) if save_path != None: start_time = time.time() print("saving graph to %s" % (save_path)) self.graph.dump(save_path) if self.debug == True: print("--- %s seconds to save the graph ---" % (time.time() - start_time)) def load_graph(self, path): import time start_time = time.time() from dijkstar import Graph self.graph = Graph() self.graph.load(path) if self.debug == True: print("--- %s seconds to load the graph ---" % (time.time() - start_time)) # takes 1-5 seconds when rotation_sensitivity == 9 def compute_shortest_path(self, source, target, graph=None): from dijkstar import find_path if graph == None: if self.graph == None: if os.path.exists( os.path.join(self.graph_dir, self.env.house.house['id'] + '.pkl')): self.load_graph( os.path.join(self.graph_dir, self.env.house.house['id'] + '.pkl')) else: self.build_graph( save_path=os.path.join( graph_dir, self.env.house.house['id'] + '.pkl')) graph = self.graph cost_func = lambda u, v, e, prev_e: e['cost'] shortest_path = find_path(graph, source, target, cost_func=cost_func) return shortest_path def fit_grid_path_to_suncg(self, nodes, init_yaw=None, back_skip=2): # don't mess with the originals nodes = copy.deepcopy(nodes) # set initial position x, y = self.env.house.to_coor(nodes[0][0], nodes[0][1], True) x, y = x.astype(np.float32).item(), y.astype(np.float32).item() self.env.cam.pos.x, self.env.cam.pos.y, self.env.cam.pos.z = x, self.env.house.robotHei, y if init_yaw == None: self.env.cam.yaw = np.random.choice(self.angles) else: self.env.cam.yaw = init_yaw self.env.cam.updateDirection() pos_queue, action_queue = [], [] current_pos = self._vec_to_array(self.env.cam.pos, self.env.cam.yaw) pos_queue = pos_queue + [current_pos] ptr = 0 while ptr < len(nodes) - 1: turned = False # target rotation target_yaw = self.angle_map[tuple( np.array(nodes[ptr]) - np.array(nodes[ptr + 1]))] # turn if target_yaw != current_pos[3]: p_q, a_q = self.get_rotate_steps(current_pos, target_yaw) pos_queue = pos_queue + p_q action_queue = action_queue + a_q self.env.cam.yaw = target_yaw self.env.cam.updateDirection() turned = True current_pos = self._vec_to_array(self.env.cam.pos, self.env.cam.yaw) # move cx, cz = self.env.house.to_coor(nodes[ptr + 1][0], nodes[ptr + 1][1], True) # if collision, find another sub-path, and delete that edge if self.env.move(cx, cz) == False: if nodes[ptr + 1] in self.graph[nodes[ptr]]: del self.graph[nodes[ptr]][nodes[ptr + 1]] print('deleted', nodes[ptr], nodes[ptr + 1]) # delete the turns if turned == True: pos_queue = pos_queue[:-len(p_q)] action_queue = action_queue[:-len(a_q)] if back_skip != 0: pos_queue = pos_queue[:-back_skip] action_queue = action_queue[:-back_skip] dest_ptr = ptr + 1 ptr = ptr - back_skip sub_shortest_path = self.compute_shortest_path( nodes[ptr], nodes[dest_ptr]) nodes = nodes[:ptr] + sub_shortest_path.nodes + nodes[dest_ptr + 1:] current_pos = pos_queue[-1] else: # this is the new position the agent moved to current_pos = self._vec_to_array(self.env.cam.pos, self.env.cam.yaw) assert current_pos[3] == pos_queue[-1][3] and ( current_pos[0] != pos_queue[-1][0] or current_pos[2] != pos_queue[-1][2]) pos_queue = pos_queue + [current_pos] action_queue = action_queue + ['fwd'] ptr = ptr + 1 action_queue.append('stop') return pos_queue, action_queue # pos contains [x, y, z, yaw] # given a position and target yaw, this function # computes actions needed to turn there def get_rotate_steps(self, pos, target_yaw): direction = np.random.choice([1, -1]) cur_yaw = pos[-1] ptr = self.angles.index(cur_yaw) pos_queue, action_queue = [], [] while cur_yaw != target_yaw: if len(pos_queue) == len(self.angles) // 2: # reset direction = direction * -1 cur_yaw = pos[-1] ptr = self.angles.index(cur_yaw) pos_queue, action_queue = [], [] ptr = (ptr + direction) % len(self.angles) cur_yaw = self.angles[ptr] pos_queue.append([pos[0], pos[1], pos[2], self.angles[ptr]]) action_queue.append(self.angle_strings[direction]) return pos_queue, action_queue def _vec_to_array(self, pos, yaw): return [pos.x, pos.y, pos.z, yaw] # render images from camera position queue def render_images_from_pos_queue(self, pos_queue=[], img_dir='tmp/images', actions=None, values=None, rewards=None): if len(pos_queue) == 0: return False action_map = {0: 'FRWD', 1: 'LEFT', 2: 'RGHT', 3: 'STOP'} import scipy.misc sgx, sgy = self.env.house.to_grid(pos_queue[0][0], pos_queue[0][2]) tgx, tgy = self.env.house.to_grid(pos_queue[-1][0], pos_queue[-1][2]) for i in range(len(pos_queue)): # set position p = pos_queue[i] self.env.reset(x=p[0], y=p[2], yaw=p[3]) # save image image = np.array(self.env.render(), copy=False) # put some text text = "[%02d]" % (i + 1) if actions != None and i < len(actions): text += "[%s]" % action_map[actions[i]] if values != None and i < len(values): text += "[V%.03f]" % values[i] if rewards != None and i > 0 and i <= len(rewards): text += "[R%.03f]" % rewards[i - 1] image = cv2.putText( img=np.copy(image), text=text, org=(20, 30), fontFace=3, fontScale=0.4, color=(255, 255, 255), thickness=1) scipy.misc.toimage(image).save( '%s/%s_%04d_%04d_%04d_%04d_%05d_%05d.jpg' % (img_dir, self.env.house.house['id'], sgx, sgy, tgx, tgy, i + 1, len(pos_queue))) return True # render video from camera position queue # # NOTE: call `render_images_from_pos_queue` before calling this def render_video_from_pos_queue(self, pos_queue=[], img_dir='tmp/images', vid_dir='tmp/videos', fps=[5], tag_name='piano'): if len(pos_queue) == 0: return False import subprocess sgx, sgy = self.env.house.to_grid(pos_queue[0][0], pos_queue[0][2]) tgx, tgy = self.env.house.to_grid(pos_queue[-1][0], pos_queue[-1][2]) for fp in fps: subprocess.Popen([ '/srv/share/abhshkdz/local/bin/ffmpeg', '-f', 'image2', '-r', str(fp), '-i', '%s/%s_%04d_%04d_%04d_%04d' % (img_dir, self.env.house.house['id'], sgx, sgy, tgx, tgy) + '_%05d_' + '%05d.jpg' % (len(pos_queue)), '-vcodec', 'libx264', '-crf', '25', '-y', '%s/%s_%04d_%04d_%s_%04d_%04d_%d.mp4' % (vid_dir, self.env.house.house['id'], sgx, sgy, tag_name, tgx, tgy, fp) ]) if self.debug == True: print('Rendered video to ' + '%s/%s_%04d_%04d_%s_%04d_%04d_%d.mp4' % (vid_dir, self.env.house.house['id'], sgx, sgy, tag_name, tgx, tgy, fp)) return True # Go over all nodes of house environment and accumulate objects room-wise. def _parse(self, levelsToExplore=[0]): rooms, objects = [], {} data = self.env.house.house modelCategoryMapping = {} import csv csvFile = csv.reader(open(self.env.house.metaDataFile, 'r')) headers = next(csvFile) for row in csvFile: modelCategoryMapping[row[headers.index('model_id')]] = { headers[x]: row[x] for x in range(2, len(headers)) # 0 is index, 1 is model_id } for i in levelsToExplore: for j in range(len(data['levels'][i]['nodes'])): assert data['levels'][i]['nodes'][j]['type'] != 'Box' if 'valid' in data['levels'][i]['nodes'][j]: assert data['levels'][i]['nodes'][j]['valid'] == 1 # Rooms if data['levels'][i]['nodes'][j]['type'] == 'Room': if 'roomTypes' not in data['levels'][i]['nodes'][j]: continue # Can rooms have more than one type? # Yes, they can; just found ['Living_Room', 'Dining_Room', 'Kitchen'] # assert len(data['levels'][i]['nodes'][j]['roomTypes']) <= 3 roomType = [ # ' '.join(x.lower().split('_')) x.lower() for x in data['levels'][i]['nodes'][j]['roomTypes'] ] nodes = data['levels'][i]['nodes'][j][ 'nodeIndices'] if 'nodeIndices' in data['levels'][i][ 'nodes'][j] else [] rooms.append({ 'type': roomType, 'bbox': data['levels'][i]['nodes'][j]['bbox'], 'nodes': nodes, 'model_id': data['levels'][i]['nodes'][j]['modelId'] }) # Objects elif data['levels'][i]['nodes'][j]['type'] == 'Object': if 'materials' not in data['levels'][i]['nodes'][j]: material = [] else: material = data['levels'][i]['nodes'][j]['materials'] objects[data['levels'][i]['nodes'][j]['id']] = { 'id': data['levels'][i]['nodes'][j]['id'], 'model_id': data['levels'][i]['nodes'][j]['modelId'], 'fine_class': modelCategoryMapping[data['levels'][i]['nodes'][j][ 'modelId']]['fine_grained_class'], 'coarse_class': modelCategoryMapping[data['levels'][i]['nodes'][j][ 'modelId']]['coarse_grained_class'], 'bbox': data['levels'][i]['nodes'][j]['bbox'], 'mat': material } return rooms, objects # Spawn at a randomly selected point in a particular room def spawn_room(self, room=None): if room == None: return False, None target_room = '_'.join(room.lower().split(' ')) if self.env.house.hasRoomType(target_room) == False: return False, None rooms = self.env.house._getRooms(target_room) room = np.random.choice(rooms) gx1, gy1, gx2, gy2 = self.env.house._getRoomBounds(room) available_coords = [] for x in range(gx1, gx2 + 1): for y in range(gy1, gy2 + 1): if self.env.house.moveMap[x, y] > 0: available_coords.append((x, y)) # print(available_coords) spawn_coord_idx = np.random.choice(len(available_coords)) spawn_coord = available_coords[spawn_coord_idx] return spawn_coord, room # Spawn close to an object # If room given, look for object within room def spawn_object(self, obj=None, room=None): if object == None: return False, None if isinstance(obj, list) == False: obj = [obj] is_door = False if 'door' in obj: is_door = True target_obj = ['_'.join(x.lower().split(' ')) for x in obj] if room != None: if 'nodeIndices' in room: objs = [ self.objects['0_' + str(x)] for x in room['nodeIndices'] if self.objects['0_' + str(x)]['fine_class'] in target_obj ] else: objs = [ self.objects['0_' + str(x)] for x in room['nodes'] if self.objects['0_' + str(x)]['fine_class'] in target_obj ] else: obj_id_list = list( itertools.chain.from_iterable( [x['nodes'] for x in self.rooms if x['type'] != []])) objs = [ self.objects['0_' + str(x)] for x in obj_id_list if self.objects['0_' + str(x)]['fine_class'] in target_obj ] if len(objs) == 0: return False, None, None obj_idx = np.random.choice(len(objs)) obj = objs[obj_idx] self.target_obj_class = obj['fine_class'].lower() gx1, gy1, gx2, gy2 = self.env.house._getRoomBounds(obj) if room == None: obj_node_idx = int(obj['id'][2:]) room = [ x for x in self.env.house.all_rooms if 'nodeIndices' in x and obj_node_idx in x['nodeIndices'] ][0] self.set_target_object(obj, room) available_x, available_y = np.where(self.env.house.connMap == 0) if len(available_x) == 0: return False, None, None spawn_coords = [] for i in range(len(available_x)): spawn_coords.append((available_x[i], available_y[i])) return spawn_coords, obj, room # analogous to `setTargetRoom` in the House3D API def set_target_object(self, obj, room): object_tp = room['id'] + '_' + obj['id'] + '_' + obj['fine_class'].lower( ) # Caching if object_tp in self.env.house.connMapDict: self.env.house.connMap, self.env.house.connectedCoors, self.env.house.inroomDist, self.env.house.maxConnDist = self.env.house.connMapDict[ object_tp] return True # object changed! elif os.path.exists( os.path.join( self.target_obj_conn_map_dir, self.env.house.house['id'] + '_' + object_tp + '.npy')): self.env.house.connMap = np.load( os.path.join( self.target_obj_conn_map_dir, self.env.house.house['id'] + '_' + object_tp + '.npy')) if self.env.house.connMap.shape[0] == self.env.house.n_row+1: self.env.house.connectedCoors, self.env.house.inroomDist, self.env.house.maxConnDist = None, None, None return True self.env.house.connMap = connMap = np.ones( (self.env.house.n_row + 1, self.env.house.n_row + 1), dtype=np.int32) * -1 self.env.house.inroomDist = inroomDist = np.ones( (self.env.house.n_row + 1, self.env.house.n_row + 1), dtype=np.float32) * -1 dirs = [[0, 1], [1, 0], [-1, 0], [0, -1]] que = [] flag_find_open_components = True _ox1, _, _oy1 = obj['bbox']['min'] _ox2, _, _oy2 = obj['bbox']['max'] ocx, ocy = (_ox1 + _ox2) / 2, (_oy1 + _oy2) / 2 ox1, oy1, ox2, oy2 = self.env.house.rescale(_ox1, _oy1, _ox2, _oy2) for _ in range(2): _x1, _, _y1 = room['bbox']['min'] _x2, _, _y2 = room['bbox']['max'] cx, cy = (_x1 + _x2) / 2, (_y1 + _y2) / 2 x1, y1, x2, y2 = self.env.house.rescale(_x1, _y1, _x2, _y2) curr_components = self.env.house._find_components( x1, y1, x2, y2, dirs=dirs, return_open=flag_find_open_components ) # find all the open components if len(curr_components) == 0: print('No space found! =(') raise ValueError('no space') if isinstance(curr_components[0], list): # join all the coors in the open components curr_major_coors = list(itertools.chain(*curr_components)) else: curr_major_coors = curr_components min_dist_to_center, min_dist_to_edge = 1e50, 1e50 for x, y in curr_major_coors: ### # Compute minimum dist to edge here if x in range(ox1, ox2): dx = 0 elif x < ox1: dx = ox1 - x else: dx = x - ox2 if y in range(oy1, oy2): dy = 0 elif y < oy1: dy = oy1 - y else: dy = y - oy2 assert dx >= 0 and dy >= 0 if dx != 0 or dy != 0: dd = np.sqrt(dx**2 + dy**2) elif dx == 0: dd = dy else: dd = dx if dd < min_dist_to_edge: min_dist_to_edge = int(np.ceil(dd)) ### tx, ty = self.env.house.to_coor(x, y) tdist = np.sqrt((tx - ocx)**2 + (ty - ocy)**2) if tdist < min_dist_to_center: min_dist_to_center = tdist inroomDist[x, y] = tdist margin = min_dist_to_edge + 1 for x, y in curr_major_coors: inroomDist[x, y] -= min_dist_to_center for x, y in curr_major_coors: if x in range(ox1 - margin, ox2 + margin) and y in range( oy1 - margin, oy2 + margin): connMap[x, y] = 0 que.append((x, y)) if len(que) > 0: break if flag_find_open_components: flag_find_open_components = False else: break raise ValueError ptr = 0 self.env.house.maxConnDist = 1 while ptr < len(que): x, y = que[ptr] cur_dist = connMap[x, y] ptr += 1 for dx, dy in dirs: tx, ty = x + dx, y + dy if self.env.house.inside(tx, ty) and self.env.house.canMove( tx, ty) and not self.env.house.isConnect(tx, ty): que.append((tx, ty)) connMap[tx, ty] = cur_dist + 1 if cur_dist + 1 > self.env.house.maxConnDist: self.env.house.maxConnDist = cur_dist + 1 self.env.house.connMapDict[object_tp] = (connMap, que, inroomDist, self.env.house.maxConnDist) np.save( os.path.join( self.target_obj_conn_map_dir, self.env.house.house['id'] + '_' + object_tp + '.npy'), connMap) self.connectedCoors = que print(' >>>> ConnMap Cached!') return True # room changed! def _load_semantic_classes(self, color_file=None): if color_file == None: color_file = self.env.config['colorFile'] self.semantic_classes = {} with open(color_file) as csv_file: reader = csv.DictReader(csv_file) for row in reader: c = np.array((row['r'], row['g'], row['b']), dtype=np.uint8) fine_cat = row['name'].lower() self.semantic_classes[fine_cat] = c return self.semantic_classes def _get_best_yaw_obj_from_pos(self, obj_id, grid_pos, height=1.0): obj = self.objects[obj_id] obj_fine_class = obj['fine_class'] cx, cy = self.env.house.to_coor(grid_pos[0], grid_pos[1]) self.env.cam.pos.x = cx self.env.cam.pos.y = height self.env.cam.pos.z = cy best_yaw, best_coverage = None, 0 for yaw in self.angles: self.env.cam.yaw = yaw self.env.cam.updateDirection() seg = self.env.render(mode='semantic') c = self.semantic_classes[obj_fine_class.lower()] mask = np.all(seg == c, axis=2) coverage = np.sum(mask) / (seg.shape[0] * seg.shape[1]) if best_yaw == None: best_yaw = yaw best_coverage = coverage else: if coverage > best_coverage: best_yaw = yaw best_coverage = coverage return best_yaw, best_coverage def _get_best_view_obj(self, obj, coverage_thres=0.5, dist_add=0.5, robot_height=False): bbox = obj['bbox'] obj_fine_class = obj['fine_class'] obj_max = np.asarray(bbox['max']) obj_min = np.asarray(bbox['min']) obj_center = (obj_min + obj_max) / 2 c_x, c_y, c_z = obj_center max_radius = np.sqrt( (obj_max[0] - obj_min[0]) * (obj_max[0] - obj_min[0]) + (obj_max[2] - obj_min[2]) * (obj_max[2] - obj_min[2])) / 2.0 max_radius += dist_add best_pos = None best_coverage = 0 returned_pos_cov = [] for yaw in self.angles: pos = [ c_x - max_radius * np.cos(yaw * (2 * np.pi) / 360.0), c_y, c_z - max_radius * np.sin(yaw * (2 * np.pi) / 360.0), yaw ] if robot_height == True: pos[1] = min(max(0.75, c_y), 2.00) self.env.cam.pos.x = pos[0] self.env.cam.pos.y = pos[1] self.env.cam.pos.z = pos[2] self.env.cam.yaw = pos[3] self.env.cam.updateDirection() seg = self.env.render(mode='semantic') c = self.semantic_classes[obj_fine_class.lower()] mask = np.all(seg == c, axis=2) coverage = np.sum(mask) / (seg.shape[0] * seg.shape[1]) returned_pos_cov.append([pos, coverage]) if coverage > coverage_thres: return pos, coverage, returned_pos_cov elif coverage > best_coverage: best_coverage = coverage best_pos = pos return best_pos, best_coverage, returned_pos_cov