Exemple #1
0
def build_knapsack_cqm(costs, weights, max_weight):
    """Construct a CQM for the knapsack problem.

    Args:
        costs (array-like):
            Array of costs for the items.
        weights (array-like):
            Array of weights for the items.
        max_weight (int):
            Maximum allowable weight for the knapsack.

    Returns:
        Constrained quadratic model instance that represents the knapsack problem.
    """
    num_items = len(costs)
    print("\nBuilding a CQM for {} items.".format(str(num_items)))

    cqm = ConstrainedQuadraticModel()
    obj = BinaryQuadraticModel(vartype='BINARY')
    constraint = QuadraticModel()

    for i in range(num_items):
        # Objective is to maximize the total costs
        obj.add_variable(i)
        obj.set_linear(i, -costs[i])
        # Constraint is to keep the sum of items' weights under or equal capacity
        constraint.add_variable('BINARY', i)
        constraint.set_linear(i, weights[i])

    cqm.set_objective(obj)
    cqm.add_constraint(constraint, sense="<=", rhs=max_weight, label='capacity')

    return cqm
Exemple #2
0
def build_cqm(W, C, n, p, a, verbose=True):
    """Builds constrained quadratic model representing the optimization problem.

    Args:
        - W: Numpy matrix. Represents passenger demand. Normalized with total demand equal to 1.
        - C: Numpy matrix. Represents airline leg cost.
        - n: Int. Number of cities in play.
        - p: Int. Number of hubs airports allowed.
        - a: Float in [0.0, 1.0]. Discount allowed for hub-hub legs.
        - verbose: Print to command-line for user.

    Returns:
        - cqm: ConstrainedQuadraticModel representing the optimization problem.
    """

    if verbose:
        print("\nBuilding CQM...\n")

    # Initialize the CQM object
    cqm = ConstrainedQuadraticModel()

    # Objective: Minimize cost. min c'x+x'Qx
    # See reference paper for full explanation.
    M = np.sum(W, axis=0) + np.sum(W, axis=1)
    Q = a * np.kron(W, C)

    linear = ((M * C.T).T).flatten()

    obj = BinaryQuadraticModel(linear, Q, 'BINARY')
    obj.relabel_variables({
        idx: (i, j)
        for idx, (i, j) in enumerate(
            (i, j) for i in range(n) for j in range(n))
    })

    cqm.set_objective(obj)

    # Add constraint to make variables discrete
    for v in range(n):
        cqm.add_discrete([(v, i) for i in range(n)])

    # Constraint: Every leg must connect to a hub.
    for i in range(n):
        for j in range(n):
            if i != j:
                c1 = BinaryQuadraticModel('BINARY')
                c1.add_linear((i, j), 1)
                c1.add_quadratic((i, j), (j, j), -1)
                cqm.add_constraint(c1 == 0)

    # Constraint: Exactly p hubs required.
    linear_terms = {(i, i): 1.0 for i in range(n)}
    c2 = BinaryQuadraticModel('BINARY')
    c2.add_linear_from(linear_terms)
    cqm.add_constraint(c2 == p, label='num hubs')

    return cqm