def test_correct_arguments(): pytest.raises(ValueError, lambda: R2.e_x(R2.e_x)) pytest.raises(ValueError, lambda: R2.e_x(R2.dx)) pytest.raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) pytest.raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) pytest.raises(ValueError, lambda: Differential(Differential(R2.e_x))) pytest.raises(ValueError, lambda: R2.dx(R2.x)) pytest.raises(ValueError, lambda: TensorProduct(R2.e_x, R2.dx)) pytest.raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) pytest.raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) pytest.raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) pytest.raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) a = Symbol('a') pytest.raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) pytest.raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) pytest.raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) pytest.raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) pytest.raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) pytest.raises(ValueError, lambda: contravariant_order(R2.dx**2)) pytest.raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) pytest.raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y)) pytest.raises(ValueError, lambda: covariant_order(R2.dx*R2.dy)) assert covariant_order(Integer(0), True) == -1 assert contravariant_order(Integer(0), True) == -1
def test_lie_derivative(): assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 assert LieDerivative(R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0
def test_lie_derivative(): assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 assert LieDerivative( R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0
def test_functional_diffgeom_ch3(): x0, y0 = symbols('x0, y0', extended_real=True) x, y, t = symbols('x, y, t', extended_real=True) f = Function('f') b1 = Function('b1') b2 = Function('b2') p_r = R2_r.point([x0, y0]) s_field = f(R2.x, R2.y) v_field = b1(R2.x) * R2.e_x + b2(R2.y) * R2.e_y assert v_field.rcall(s_field).rcall(p_r).doit() == b1(x0) * Derivative( f(x0, y0), x0) + b2(y0) * Derivative(f(x0, y0), y0) assert R2.e_x(R2.r**2).rcall(p_r) == 2 * x0 v = R2.e_x + 2 * R2.e_y s = R2.r**2 + 3 * R2.x assert v.rcall(s).rcall(p_r).doit() == 2 * x0 + 4 * y0 + 3 circ = -R2.y * R2.e_x + R2.x * R2.e_y series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True) series_x, series_y = zip(*series) assert all(term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)) assert all(term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y))
def test_functional_diffgeom_ch3(): x0, y0 = symbols('x0, y0', extended_real=True) x, y, t = symbols('x, y, t', extended_real=True) f = Function('f') b1 = Function('b1') b2 = Function('b2') p_r = R2_r.point([x0, y0]) s_field = f(R2.x, R2.y) v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y assert v_field.rcall(s_field).rcall(p_r).doit() == b1( x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0) assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0 v = R2.e_x + 2*R2.e_y s = R2.r**2 + 3*R2.x assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3 circ = -R2.y*R2.e_x + R2.x*R2.e_y series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True) series_x, series_y = zip(*series) assert all(term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)) assert all(term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y))