def test_Domain_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ.poly_ring(x).has_assoc_Ring is True assert QQ.poly_ring(x).has_assoc_Ring is True assert ZZ.poly_ring(x, y).has_assoc_Ring is True assert QQ.poly_ring(x, y).has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.ring == ZZ assert QQ.ring == ZZ assert ZZ.poly_ring(x).ring == ZZ.poly_ring(x) assert QQ.poly_ring(x).ring == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).ring == ZZ.poly_ring(x, y) assert QQ.poly_ring(x, y).ring == QQ.poly_ring(x, y) assert ZZ.frac_field(x).ring == ZZ.poly_ring(x) assert QQ.frac_field(x).ring == QQ.poly_ring(x) assert ZZ.frac_field(x, y).ring == ZZ.poly_ring(x, y) assert QQ.frac_field(x, y).ring == QQ.poly_ring(x, y) assert EX.ring == EX pytest.raises(AttributeError, lambda: RR.ring) pytest.raises(AttributeError, lambda: ALG.ring)
def test_Domain___eq__(): assert (ZZ.poly_ring(x, y) == ZZ.poly_ring(x, y)) is True assert (QQ.poly_ring(x, y) == QQ.poly_ring(x, y)) is True assert (ZZ.poly_ring(x, y) == QQ.poly_ring(x, y)) is False assert (QQ.poly_ring(x, y) == ZZ.poly_ring(x, y)) is False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False
def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ.poly_ring(x).get_exact() == ZZ.poly_ring(x) assert QQ.poly_ring(x).get_exact() == QQ.poly_ring(x) assert ZZ.poly_ring(x, y).get_exact() == ZZ.poly_ring(x, y) assert QQ.poly_ring(x, y).get_exact() == QQ.poly_ring(x, y) assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
def test_FractionField___init__(): F1 = ZZ.frac_field("x", "y") F2 = ZZ.frac_field("x", "y") F3 = ZZ.frac_field("x", "y", "z") assert F1.x == F1.gens[0] assert F1.y == F1.gens[1] assert F1.x == F2.x assert F1.y == F2.y assert F1.x != F3.x assert F1.y != F3.y F4 = ZZ.frac_field("gens") assert type(F4.gens) is tuple
def test_FractionField_methods(): F = ZZ.frac_field("x") assert F.domain_new(2) == ZZ(2) x = symbols("x") assert F.field_new(x**2 + x) == F.x**2 + F.x
def test_FractionField(): sT(ZZ.frac_field("x"), "FractionField(%s, (Symbol('x'),), " "LexOrder())" % repr(ZZ)) sT(QQ.frac_field("x", "y", order=grlex), "FractionField(%s, (Symbol('x'), Symbol('y')), " "GradedLexOrder())" % repr(QQ)) sT(ZZ.poly_ring("t").frac_field("x", "y", "z"), "FractionField(PolynomialRing(%s, (Symbol('t'),), LexOrder()), " "(Symbol('x'), Symbol('y'), Symbol('z')), LexOrder())" % repr(ZZ))
def test___eq__(): assert not QQ.poly_ring(x) == ZZ.poly_ring(x) assert not QQ.frac_field(x) == ZZ.frac_field(x) assert EX(1) != EX(2) F11 = FF(11) assert F11(2) != F11(3) assert F11(2) != object()
def test_FractionField(): sT(ZZ.frac_field("x"), "FractionField(%s, (Symbol('x'),), " "LexOrder())" % repr(ZZ)) sT( QQ.frac_field("x", "y", order=grlex), "FractionField(%s, (Symbol('x'), Symbol('y')), " "GradedLexOrder())" % repr(QQ)) sT( ZZ.poly_ring("t").frac_field("x", "y", "z"), "FractionField(PolynomialRing(%s, (Symbol('t'),), LexOrder()), " "(Symbol('x'), Symbol('y'), Symbol('z')), LexOrder())" % repr(ZZ))
def test_Domain_field(): assert EX.has_assoc_Field is True assert ZZ.has_assoc_Field is True assert QQ.has_assoc_Field is True assert RR.has_assoc_Field is True assert ALG.has_assoc_Field is True assert ZZ.poly_ring(x).has_assoc_Field is True assert QQ.poly_ring(x).has_assoc_Field is True assert ZZ.poly_ring(x, y).has_assoc_Field is True assert QQ.poly_ring(x, y).has_assoc_Field is True assert EX.field == EX assert ZZ.field == QQ assert QQ.field == QQ assert RR.field == RR assert ALG.field == ALG assert ZZ.poly_ring(x).field == ZZ.frac_field(x) assert QQ.poly_ring(x).field == QQ.frac_field(x) assert ZZ.poly_ring(x, y).field == ZZ.frac_field(x, y) assert QQ.poly_ring(x, y).field == QQ.frac_field(x, y)
def test_FracElement___call__(): F, x, y, z = field("x,y,z", ZZ) f = (x**2 + 3*y)/z pytest.raises(ValueError, lambda: f(1, 1, 1, 1)) r = f(1, 1, 1) assert r == 4 and not isinstance(r, FracElement) pytest.raises(ZeroDivisionError, lambda: f(1, 1, 0)) Fz = ZZ.frac_field("z") assert f(1, 1) == 4/Fz.z
def test_FracElement___call__(): F, x, y, z = field("x,y,z", ZZ) f = (x**2 + 3 * y) / z pytest.raises(ValueError, lambda: f(1, 1, 1, 1)) r = f(1, 1, 1) assert r == 4 and not isinstance(r, FracElement) pytest.raises(ZeroDivisionError, lambda: f(1, 1, 0)) Fz = ZZ.frac_field("z") assert f(1, 1) == 4 / Fz.z
def test_sring(): x, y, z, t = symbols("x,y,z,t") R = ZZ.poly_ring("x", "y", "z") assert sring(x + 2*y + 3*z) == (R, R.x + 2*R.y + 3*R.z) R = QQ.poly_ring("x", "y", "z") assert sring(x + 2*y + z/3) == (R, R.x + 2*R.y + R.z/3) assert sring([x, 2*y, z/3]) == (R, [R.x, 2*R.y, R.z/3]) Rt = ZZ.poly_ring("t") R = Rt.poly_ring("x", "y", "z") assert sring(x + 2*t*y + 3*t**2*z, x, y, z) == (R, R.x + 2*Rt.t*R.y + 3*Rt.t**2*R.z) Rt = QQ.poly_ring("t") R = Rt.poly_ring("x", "y", "z") assert sring(x + t*y/2 + t**2*z/3, x, y, z) == (R, R.x + Rt.t*R.y/2 + Rt.t**2*R.z/3) Rt = ZZ.frac_field("t") R = Rt.poly_ring("x", "y", "z") assert sring(x + 2*y/t + t**2*z/3, x, y, z) == (R, R.x + 2*R.y/Rt.t + Rt.t**2*R.z/3) R = QQ.poly_ring("x", "y") assert sring(x + y, domain=QQ) == (R, R.x + R.y)
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert Domain.preprocess('Z') == ZZ assert Domain.preprocess('Q') == QQ assert Domain.preprocess('ZZ') == ZZ assert Domain.preprocess('QQ') == QQ assert Domain.preprocess('EX') == EX assert Domain.preprocess('FF(23)') == FF(23) assert Domain.preprocess('GF(23)') == GF(23) pytest.raises(OptionError, lambda: Domain.preprocess('Z[]')) assert Domain.preprocess('Z[x]') == ZZ.poly_ring(x) assert Domain.preprocess('Q[x]') == QQ.poly_ring(x) assert Domain.preprocess('ZZ[x]') == ZZ.poly_ring(x) assert Domain.preprocess('QQ[x]') == QQ.poly_ring(x) assert Domain.preprocess('Z[x,y]') == ZZ.poly_ring(x, y) assert Domain.preprocess('Q[x,y]') == QQ.poly_ring(x, y) assert Domain.preprocess('ZZ[x,y]') == ZZ.poly_ring(x, y) assert Domain.preprocess('QQ[x,y]') == QQ.poly_ring(x, y) pytest.raises(OptionError, lambda: Domain.preprocess('Z()')) assert Domain.preprocess('Z(x)') == ZZ.frac_field(x) assert Domain.preprocess('Q(x)') == QQ.frac_field(x) assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x) assert Domain.preprocess('QQ(x)') == QQ.frac_field(x) assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I) assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I) assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess( 'QQ<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) pytest.raises(OptionError, lambda: Domain.preprocess('abc')) assert Domain.preprocess('RR') == RR assert Domain.preprocess('RR_5') == RealField(prec=5) assert Domain.preprocess('CC') == CC assert Domain.preprocess('CC_5') == ComplexField(prec=5) pytest.raises(OptionError, lambda: Domain.preprocess(()))
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert Domain.preprocess('Z') == ZZ assert Domain.preprocess('Q') == QQ assert Domain.preprocess('ZZ') == ZZ assert Domain.preprocess('QQ') == QQ assert Domain.preprocess('EX') == EX assert Domain.preprocess('FF(23)') == FF(23) assert Domain.preprocess('GF(23)') == GF(23) pytest.raises(OptionError, lambda: Domain.preprocess('Z[]')) assert Domain.preprocess('Z[x]') == ZZ.poly_ring(x) assert Domain.preprocess('Q[x]') == QQ.poly_ring(x) assert Domain.preprocess('ZZ[x]') == ZZ.poly_ring(x) assert Domain.preprocess('QQ[x]') == QQ.poly_ring(x) assert Domain.preprocess('Z[x,y]') == ZZ.poly_ring(x, y) assert Domain.preprocess('Q[x,y]') == QQ.poly_ring(x, y) assert Domain.preprocess('ZZ[x,y]') == ZZ.poly_ring(x, y) assert Domain.preprocess('QQ[x,y]') == QQ.poly_ring(x, y) pytest.raises(OptionError, lambda: Domain.preprocess('Z()')) assert Domain.preprocess('Z(x)') == ZZ.frac_field(x) assert Domain.preprocess('Q(x)') == QQ.frac_field(x) assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x) assert Domain.preprocess('QQ(x)') == QQ.frac_field(x) assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I) assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I) assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess('QQ<sqrt(2), I>') == QQ.algebraic_field( sqrt(2), I) pytest.raises(OptionError, lambda: Domain.preprocess('abc')) assert Domain.preprocess('RR') == RR assert Domain.preprocess('RR_5') == RealField(prec=5) assert Domain.preprocess('CC') == CC assert Domain.preprocess('CC_5') == ComplexField(prec=5) pytest.raises(OptionError, lambda: Domain.preprocess(()))
def test_inject(): assert ZZ.inject(x, y, z) == ZZ.poly_ring(x, y, z) assert ZZ.poly_ring(x).inject(y, z) == ZZ.poly_ring(x, y, z) assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z) pytest.raises(GeneratorsError, lambda: ZZ.poly_ring(x).inject(x))
def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == F3 assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ.poly_ring(x)) == F3.poly_ring(x) assert unify(F3, ZZ.frac_field(x)) == F3.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == F3 assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ.poly_ring(x)) == RR.poly_ring(x) assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ.poly_ring(x)) == CC.poly_ring(x) assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX CC2 = ComplexField(prec=20) assert unify(CC, CC2) == unify(CC2, CC) == ComplexField(prec=CC.precision, tol=CC2.tolerance) RR2 = RealField(prec=20) assert unify(RR, RR2) == unify(RR2, RR) == RealField(prec=RR.precision, tol=RR2.tolerance) assert unify(ZZ.poly_ring(x), F3) == F3.poly_ring(x) assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x), ALG) == ALG.poly_ring(x) assert unify(ZZ.poly_ring(x), RR) == RR.poly_ring(x) assert unify(ZZ.poly_ring(x), CC) == CC.poly_ring(x) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), EX) == EX assert unify(ZZ.frac_field(x), F3) == F3.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ.poly_ring(x)) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX
def test_Domain_unify_composite(): assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
def test_FractionField(): assert str(ZZ.frac_field("x")) == "ZZ(x)" assert str(QQ.frac_field("x", "y", order=grlex)) == "QQ(x,y)" assert str(ZZ.poly_ring("t").frac_field("x", "y", "z")) == "ZZ[t](x,y,z)"
def test_FractionField__init(): pytest.raises(GeneratorsNeeded, lambda: ZZ.frac_field())
def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([Integer(1), Integer(2), Integer(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain( [Integer(1), Integer(2), Integer(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([Rational(1, 2), Integer(2)]) == (QQ, [QQ(1, 2), QQ(2)]) assert construct_domain([3.14, 1, Rational(1, 2) ]) == (RR, [RR(3.14), RR(1.0), RR(0.5)]) assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([sqrt(2), 3.14], extension=True) == (EX, [EX(sqrt(2)), EX(3.14)]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))]) assert construct_domain([x, sqrt(x), sqrt(y) ]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))]) alg = QQ.algebraic_field(sqrt(2)) assert (construct_domain( [7, Rational(1, 2), sqrt(2)], extension=True) == (alg, [alg(7), alg(Rational(1, 2)), alg(sqrt(2))])) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert (construct_domain([7, sqrt(2), sqrt(3)], extension=True) == (alg, [ alg(7), alg(sqrt(2)), alg(sqrt(3)) ])) dom = ZZ.poly_ring(x) assert construct_domain([2 * x, 3]) == (dom, [dom(2 * x), dom(3)]) dom = ZZ.poly_ring(x, y) assert construct_domain([2 * x, 3 * y]) == (dom, [dom(2 * x), dom(3 * y)]) dom = QQ.poly_ring(x) assert construct_domain([x / 2, 3]) == (dom, [dom(x / 2), dom(3)]) dom = QQ.poly_ring(x, y) assert construct_domain([x / 2, 3 * y]) == (dom, [dom(x / 2), dom(3 * y)]) dom = RR.poly_ring(x) assert construct_domain([x / 2, 3.5]) == (dom, [dom(x / 2), dom(3.5)]) dom = RR.poly_ring(x, y) assert construct_domain([x / 2, 3.5 * y]) == (dom, [dom(x / 2), dom(3.5 * y)]) dom = ZZ.frac_field(x) assert construct_domain([2 / x, 3]) == (dom, [dom(2 / x), dom(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2 / x, 3 * y]) == (dom, [dom(2 / x), dom(3 * y)]) dom = RR.frac_field(x) assert construct_domain([2 / x, 3.5]) == (dom, [dom(2 / x), dom(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2 / x, 3.5 * y]) == (dom, [dom(2 / x), dom(3.5 * y)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3)) assert construct_domain({}) == (ZZ, {})