Exemple #1
0
def test_pl_true():
    assert pl_true(True) is True
    assert pl_true( A & B, {A: True, B: True}) is True
    assert pl_true( A | B, {A: True}) is True
    assert pl_true( A | B, {B: True}) is True
    assert pl_true( A | B, {A: None, B: True}) is True
    assert pl_true( A >> B, {A: False}) is True
    assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
    assert pl_true(Equivalent(A, B), {A: False, B: False}) is True

    # test for false
    assert pl_true(False) is False
    assert pl_true( A & B, {A: False, B: False}) is False
    assert pl_true( A & B, {A: False}) is False
    assert pl_true( A & B, {B: False}) is False
    assert pl_true( A | B, {A: False, B: False}) is False

    # test for None
    assert pl_true(B, {B: None}) is None
    assert pl_true( A & B, {A: True, B: None}) is None
    assert pl_true( A >> B, {A: True, B: None}) is None
    assert pl_true(Equivalent(A, B), {A: None}) is None
    assert pl_true(Equivalent(A, B), {A: True, B: None}) is None

    # Test for deep
    assert pl_true(A | B, {A: False}, deep=True) is None
    assert pl_true(~A & ~B, {A: False}, deep=True) is None
    assert pl_true(A | B, {A: False, B: False}, deep=True) is False
    assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
    assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True
Exemple #2
0
def test_to_nnf():
    assert to_nnf(true) is true
    assert to_nnf(false) is false
    assert to_nnf(A) == A
    assert (~A).to_nnf() == ~A

    class Boo(BooleanFunction):
        pass

    pytest.raises(ValueError, lambda: to_nnf(~Boo(A)))

    assert to_nnf(A | ~A | B) is true
    assert to_nnf(A & ~A & B) is false
    assert to_nnf(A >> B) == ~A | B
    assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A)
    assert to_nnf(A ^ B ^ C) == \
        (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C)
    assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C)
    assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C
    assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C
    assert to_nnf(Not(A >> B)) == A & ~B
    assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C))
    assert to_nnf(Not(A ^ B ^ C)) == \
        (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C)
    assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C)
    assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B)
    assert to_nnf((A >> B) ^ (B >> A), False) == \
        (~A | ~B | A | B) & ((A & ~B) | (~A & B))
Exemple #3
0
def test_dpll_satisfiable():
    A, B, C = symbols('A,B,C')
    assert dpll_satisfiable(A & ~A) is False
    assert dpll_satisfiable(A & ~B) == {A: True, B: False}
    assert dpll_satisfiable(A | B) in ({
        A: True
    }, {
        B: True
    }, {
        A: True,
        B: True
    })
    assert dpll_satisfiable((~A | B) & (~B | A)) in ({
        A: True,
        B: True
    }, {
        A: False,
        B: False
    })
    assert dpll_satisfiable((A | B) & (~B | C)) in ({
        A: True,
        B: False
    }, {
        A: True,
        C: True
    }, {
        B: True,
        C: True
    })
    assert dpll_satisfiable(A & B & C) == {A: True, B: True, C: True}
    assert dpll_satisfiable((A | B) & (A >> B)) == {B: True}
    assert dpll_satisfiable(Equivalent(A, B) & A) == {A: True, B: True}
    assert dpll_satisfiable(Equivalent(A, B) & ~A) == {A: False, B: False}
Exemple #4
0
def test_to_dnf():
    assert to_dnf(true) == true
    assert to_dnf((~B) & (~C)) == (~B) & (~C)
    assert to_dnf(~(B | C)) == And(Not(B), Not(C))
    assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C))
    assert to_dnf(A >> B) == (~A) | B
    assert to_dnf(A >> (B & C)) == (~A) | (B & C)

    assert to_dnf(Equivalent(A, B), True) == \
        Or(And(A, B), And(Not(A), Not(B)))
    assert to_dnf(Equivalent(A, B & C), True) == \
        Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C)))
Exemple #5
0
def test_to_cnf():

    assert to_cnf(~(B | C)) == And(Not(B), Not(C))
    assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C))
    assert to_cnf(A >> B) == (~A) | B
    assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C)
    assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C

    assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A)))
    assert to_cnf(Equivalent(A, B & C)) == \
           (~A | B) & (~A | C) & (~B | ~C | A)
    assert to_cnf(Equivalent(A, B | C), True) == \
        And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A)))
Exemple #6
0
def test_equals():
    assert Not(Or(A, B)).equals( And(Not(A), Not(B)) ) is True
    assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True
    assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True
    assert (A >> B).equals(~A >> ~B) is False
    assert (A >> (B >> A)).equals(A >> (C >> A)) is False
    pytest.raises(NotImplementedError, lambda: And(A, A < B).equals(And(A, B > A)))
Exemple #7
0
def test_eliminate_implications():
    from diofant.abc import A, B, C, D
    assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B
    assert eliminate_implications(A >> (C >> Not(B))) == Or(
        Or(Not(B), Not(C)), Not(A))
    assert eliminate_implications(Equivalent(A, B, C, D)) == \
        (~A | B) & (~B | C) & (~C | D) & (~D | A)
Exemple #8
0
def test_satisfiable_all_models():
    assert next(satisfiable(False, all_models=True)) is False
    assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
    assert list(satisfiable(True, all_models=True)) == [{true: true}]

    models = [{A: True, B: False}, {A: False, B: True}]
    result = satisfiable(A ^ B, all_models=True)
    models.remove(next(result))
    models.remove(next(result))
    pytest.raises(StopIteration, lambda: next(result))
    assert not models

    assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
        [{A: False, B: False}, {A: True, B: True}]

    models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
    for model in satisfiable(A >> B, all_models=True):
        models.remove(model)
    assert not models

    # This is a santiy test to check that only the required number
    # of solutions are generated. The expr below has 2**100 - 1 models
    # which would time out the test if all are generated at once.
    sym = numbered_symbols()
    X = [next(sym) for i in range(100)]
    result = satisfiable(Or(*X), all_models=True)
    for i in range(10):
        assert next(result)
Exemple #9
0
def test_fcode_precedence():
    assert fcode(And(x < y, y < x + 1), source_format="free") == \
        "x < y .and. y < x + 1"
    assert fcode(Or(x < y, y < x + 1), source_format="free") == \
        "x < y .or. y < x + 1"
    assert fcode(Xor(x < y, y < x + 1, evaluate=False),
                 source_format="free") == "x < y .neqv. y < x + 1"
    assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \
        "x < y .eqv. y < x + 1"
Exemple #10
0
def test_dpll2_satisfiable():
    assert dpll2_satisfiable( A & ~A ) is False
    assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
    assert dpll2_satisfiable(
        A | B ) in ({A: True}, {B: True}, {A: True, B: True})
    assert dpll2_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
                                                       {A: True, B: True, C: True})
    assert dpll2_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
                                                       {B: True, A: True})
    assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}

    l = SATSolver([], set(), set())
    assert l.lit_heap == []
    assert l._vsids_calculate() == 0
Exemple #11
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from diofant.abc import w, x, y, z
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z],
                       set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    e = And(A, x**2 - x)
    assert simplify_logic(e) == And(A, x * (x - 1))
    assert simplify_logic(e, deep=False) == e

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    pytest.raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    pytest.raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) is S.false
    assert simplify(Or(x, Not(x))) is S.true
Exemple #12
0
def test_dpll2_satisfiable():
    A, B, C = symbols('A,B,C')
    assert dpll2_satisfiable( A & ~A ) is False
    assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
    assert dpll2_satisfiable(
        A | B ) in ({A: True}, {B: True}, {A: True, B: True})
    assert dpll2_satisfiable(
        (~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
    assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
        {A: True, B: True, C: True})
    assert dpll2_satisfiable( A & B & C  ) == {A: True, B: True, C: True}
    assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
        {B: True, A: True})
    assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
    assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}

    from diofant.logic.algorithms.dpll2 import SATSolver

    l = SATSolver([], set(), set())
    assert l.lit_heap == []
    assert l._vsids_calculate() == 0
Exemple #13
0
def test_dpll2_satisfiable():
    assert dpll2_satisfiable(A & ~A) is False
    assert dpll2_satisfiable(A & ~B) == {A: True, B: False}
    assert dpll2_satisfiable(A | B) in ({
        A: True
    }, {
        B: True
    }, {
        A: True,
        B: True
    })
    assert dpll2_satisfiable((~A | B) & (~B | A)) in ({
        A: True,
        B: True
    }, {
        A: False,
        B: False
    })
    assert dpll2_satisfiable((A | B) & (~B | C)) in ({
        A: True,
        B: False,
        C: True
    }, {
        A: True,
        B: True,
        C: True
    })
    assert dpll2_satisfiable(A & B & C) == {A: True, B: True, C: True}
    assert dpll2_satisfiable((A | B) & (A >> B)) in ({
        B: True,
        A: False
    }, {
        B: True,
        A: True
    })
    assert dpll2_satisfiable(Equivalent(A, B) & A) == {A: True, B: True}
    assert dpll2_satisfiable(Equivalent(A, B) & ~A) == {A: False, B: False}

    l = SATSolver([], set(), set())
    assert l.lit_heap == []
    assert l._vsids_calculate() == 0

    l0 = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, {3, -2}], {1, 2, 3}, set())

    l = copy.deepcopy(l0)
    assert l.num_learned_clauses == 0
    assert l.lit_scores == {
        -3: -2.0,
        -2: -2.0,
        -1: 0.0,
        1: 0.0,
        2: -2.0,
        3: -2.0
    }
    l._vsids_clause_added({2, -3})
    assert l.num_learned_clauses == 1
    assert l.lit_scores == {
        -3: -1.0,
        -2: -2.0,
        -1: 0.0,
        1: 0.0,
        2: -1.0,
        3: -2.0
    }

    l = copy.deepcopy(l0)
    assert l.num_learned_clauses == 0
    assert l.clauses == [[2, -3], [1], [3, -3], [2, -2], [3, -2]]
    assert l.sentinels == {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}}
    l._simple_add_learned_clause([3])
    assert l.clauses == [[2, -3], [1], [3, -3], [2, -2], [3, -2], [3]]
    assert l.sentinels == {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4, 5}}

    l = copy.deepcopy(l0)
    assert l.lit_scores == {
        -3: -2.0,
        -2: -2.0,
        -1: 0.0,
        1: 0.0,
        2: -2.0,
        3: -2.0
    }
    l._vsids_decay()
    assert l.lit_scores == {
        -3: -1.0,
        -2: -1.0,
        -1: 0.0,
        1: 0.0,
        2: -1.0,
        3: -1.0
    }

    l = copy.deepcopy(l0)
    assert next(l._find_model()) == {1: True, 2: False, 3: False}
    assert l._simple_compute_conflict() == [3]
Exemple #14
0
def test_fcode_Xlogical():
    # binary Xor
    assert fcode(Xor(x, y, evaluate=False), source_format="free") == \
        "x .neqv. y"
    assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \
        "x .neqv. .not. y"
    assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \
        "y .neqv. .not. x"
    assert fcode(Xor(Not(x), Not(y), evaluate=False),
                 source_format="free") == ".not. x .neqv. .not. y"
    assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
                 source_format="free") == ".not. (x .neqv. y)"
    # binary Equivalent
    assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y"
    assert fcode(Equivalent(x, Not(y)), source_format="free") == \
        "x .eqv. .not. y"
    assert fcode(Equivalent(Not(x), y), source_format="free") == \
        "y .eqv. .not. x"
    assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \
        ".not. x .eqv. .not. y"
    assert fcode(Not(Equivalent(x, y), evaluate=False),
                 source_format="free") == ".not. (x .eqv. y)"
    # mixed And/Equivalent
    assert fcode(Equivalent(And(y, z), x), source_format="free") == \
        "x .eqv. y .and. z"
    assert fcode(Equivalent(And(z, x), y), source_format="free") == \
        "y .eqv. x .and. z"
    assert fcode(Equivalent(And(x, y), z), source_format="free") == \
        "z .eqv. x .and. y"
    assert fcode(And(Equivalent(y, z), x), source_format="free") == \
        "x .and. (y .eqv. z)"
    assert fcode(And(Equivalent(z, x), y), source_format="free") == \
        "y .and. (x .eqv. z)"
    assert fcode(And(Equivalent(x, y), z), source_format="free") == \
        "z .and. (x .eqv. y)"
    # mixed Or/Equivalent
    assert fcode(Equivalent(Or(y, z), x), source_format="free") == \
        "x .eqv. y .or. z"
    assert fcode(Equivalent(Or(z, x), y), source_format="free") == \
        "y .eqv. x .or. z"
    assert fcode(Equivalent(Or(x, y), z), source_format="free") == \
        "z .eqv. x .or. y"
    assert fcode(Or(Equivalent(y, z), x), source_format="free") == \
        "x .or. (y .eqv. z)"
    assert fcode(Or(Equivalent(z, x), y), source_format="free") == \
        "y .or. (x .eqv. z)"
    assert fcode(Or(Equivalent(x, y), z), source_format="free") == \
        "z .or. (x .eqv. y)"
    # mixed Xor/Equivalent
    assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
                 source_format="free") == "x .eqv. (y .neqv. z)"
    assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
                 source_format="free") == "y .eqv. (x .neqv. z)"
    assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
                 source_format="free") == "z .eqv. (x .neqv. y)"
    assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
                 source_format="free") == "x .neqv. (y .eqv. z)"
    assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
                 source_format="free") == "y .neqv. (x .eqv. z)"
    assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
                 source_format="free") == "z .neqv. (x .eqv. y)"
    # mixed And/Xor
    assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \
        "x .neqv. y .and. z"
    assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \
        "y .neqv. x .and. z"
    assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \
        "z .neqv. x .and. y"
    assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \
        "x .and. (y .neqv. z)"
    assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \
        "y .and. (x .neqv. z)"
    assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \
        "z .and. (x .neqv. y)"
    # mixed Or/Xor
    assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \
        "x .neqv. y .or. z"
    assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \
        "y .neqv. x .or. z"
    assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \
        "z .neqv. x .or. y"
    assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \
        "x .or. (y .neqv. z)"
    assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \
        "y .or. (x .neqv. z)"
    assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \
        "z .or. (x .neqv. y)"
    # trinary Xor
    assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \
        "x .neqv. y .neqv. z"
    assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \
        "x .neqv. y .neqv. .not. z"
    assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \
        "x .neqv. z .neqv. .not. y"
    assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \
        "y .neqv. z .neqv. .not. x"
Exemple #15
0
def test_Equivalent():

    assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A)
    assert Equivalent() is true
    assert Equivalent(A, A) == Equivalent(A) is true
    assert Equivalent(True, True) == Equivalent(False, False) is true
    assert Equivalent(True, False) == Equivalent(False, True) is false
    assert Equivalent(A, True) == A
    assert Equivalent(A, False) == Not(A)
    assert Equivalent(A, B, True) == A & B
    assert Equivalent(A, B, False) == ~A & ~B
    assert Equivalent(1, A) == A
    assert Equivalent(0, A) == Not(A)
    assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C)
    assert Equivalent(A < 1, A >= 1) is false
    assert Equivalent(A < 1, A >= 1, 0) is false
    assert Equivalent(A < 1, A >= 1, 1) is false
    assert Equivalent(A < 1,
                      Integer(1) > A) == Equivalent(1, 1) == Equivalent(0, 0)
    assert Equivalent(A < 1, B >= 1) == Equivalent(B >= 1,
                                                   A < 1,
                                                   evaluate=False)
Exemple #16
0
def test_entails():
    assert entails(A, [A >> B, ~B]) is False
    assert entails(B, [Equivalent(A, B), A]) is True
    assert entails((A >> B) >> (~A >> ~B)) is False
    assert entails((A >> B) >> (~B >> ~A)) is True
Exemple #17
0
def test_true_false():
    assert true is true
    assert false is false
    assert true is not True
    assert false is not False
    assert true
    assert not false
    assert true == True  # noqa: E712
    assert false == False  # noqa: E712
    assert not (true == False)  # noqa: E712
    assert not (false == True)  # noqa: E712
    assert not (true == false)

    assert hash(true) == hash(True)
    assert hash(false) == hash(False)
    assert len({true, True}) == len({false, False}) == 1

    assert isinstance(true, BooleanAtom)
    assert isinstance(false, BooleanAtom)
    # We don't want to subclass from bool, because bool subclasses from
    # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
    # 1 then we want them to on true and false.  See the docstrings of the
    # various And, Or, etc. functions for examples.
    assert not isinstance(true, bool)
    assert not isinstance(false, bool)

    # Note: using 'is' comparison is important here. We want these to return
    # true and false, not True and False

    assert Not(true) is false
    assert Not(True) is false
    assert Not(false) is true
    assert Not(False) is true
    assert ~true is false
    assert ~false is true

    for T, F in itertools.product([True, true], [False, false]):
        assert And(T, F) is false
        assert And(F, T) is false
        assert And(F, F) is false
        assert And(T, T) is true
        assert And(T, x) == x
        assert And(F, x) is false
        if not (T is True and F is False):
            assert T & F is false
            assert F & T is false
        if F is not False:
            assert F & F is false
        if T is not True:
            assert T & T is true

        assert Or(T, F) is true
        assert Or(F, T) is true
        assert Or(F, F) is false
        assert Or(T, T) is true
        assert Or(T, x) is true
        assert Or(F, x) == x
        if not (T is True and F is False):
            assert T | F is true
            assert F | T is true
        if F is not False:
            assert F | F is false
        if T is not True:
            assert T | T is true

        assert Xor(T, F) is true
        assert Xor(F, T) is true
        assert Xor(F, F) is false
        assert Xor(T, T) is false
        assert Xor(T, x) == ~x
        assert Xor(F, x) == x
        if not (T is True and F is False):
            assert T ^ F is true
            assert F ^ T is true
        if F is not False:
            assert F ^ F is false
        if T is not True:
            assert T ^ T is false

        assert Nand(T, F) is true
        assert Nand(F, T) is true
        assert Nand(F, F) is true
        assert Nand(T, T) is false
        assert Nand(T, x) == ~x
        assert Nand(F, x) is true

        assert Nor(T, F) is false
        assert Nor(F, T) is false
        assert Nor(F, F) is true
        assert Nor(T, T) is false
        assert Nor(T, x) is false
        assert Nor(F, x) == ~x

        assert Implies(T, F) is false
        assert Implies(F, T) is true
        assert Implies(F, F) is true
        assert Implies(T, T) is true
        assert Implies(T, x) == x
        assert Implies(F, x) is true
        assert Implies(x, T) is true
        assert Implies(x, F) == ~x
        if not (T is True and F is False):
            assert T >> F is false
            assert F << T is false
            assert F >> T is true
            assert T << F is true
        if F is not False:
            assert F >> F is true
            assert F << F is true
        if T is not True:
            assert T >> T is true
            assert T << T is true

        assert Equivalent(T, F) is false
        assert Equivalent(F, T) is false
        assert Equivalent(F, F) is true
        assert Equivalent(T, T) is true
        assert Equivalent(T, x) == x
        assert Equivalent(F, x) == ~x
        assert Equivalent(x, T) == x
        assert Equivalent(x, F) == ~x

        assert ITE(T, T, T) is true
        assert ITE(T, T, F) is true
        assert ITE(T, F, T) is false
        assert ITE(T, F, F) is false
        assert ITE(F, T, T) is true
        assert ITE(F, T, F) is false
        assert ITE(F, F, T) is true
        assert ITE(F, F, F) is false