Exemple #1
0
def dmp_rr_lcm(f, g, u, K):
    """
    Computes polynomial LCM over a ring in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_rr_lcm(f, g)
    x**3 + 2*x**2*y + x*y**2

    """
    fc, f = dmp_ground_primitive(f, u, K)
    gc, g = dmp_ground_primitive(g, u, K)

    c = K.lcm(fc, gc)

    h = dmp_quo(dmp_mul(f, g, u, K), dmp_gcd(f, g, u, K), u, K)

    return dmp_mul_ground(h, c, u, K)
Exemple #2
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
    x**2 + x*y

    """
    if not u:
        return dup_sqf_part(f, K)

    if K.is_FiniteField:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Exemple #3
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ

    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x**5 + 2*x**4*y + x**3*y**2

    >>> R.dmp_sqf_list(f)
    (1, [(x + y, 2), (x, 3)])
    >>> R.dmp_sqf_list(f, all=True)
    (1, [(1, 1), (x + y, 2), (x, 3)])
    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if K.is_FiniteField:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Exemple #4
0
def test_dmp_ground_primitive():
    assert dmp_ground_primitive([], 0, ZZ) == (0, [])
    assert dmp_ground_primitive([ZZ(1)], 0, ZZ) == (1, [1])
    assert dmp_ground_primitive([ZZ(1), ZZ(1)], 0, ZZ) == (1, [1, 1])
    assert dmp_ground_primitive([ZZ(2), ZZ(2)], 0, ZZ) == (2, [1, 1])
    assert dmp_ground_primitive([ZZ(1), ZZ(2), ZZ(1)], 0, ZZ) == (1, [1, 2, 1])
    assert dmp_ground_primitive([ZZ(2), ZZ(4), ZZ(2)], 0, ZZ) == (2, [1, 2, 1])
    assert dmp_ground_primitive([ZZ(6), ZZ(8), ZZ(12)], 0, ZZ) == (2, [3, 4, 6])

    assert dmp_ground_primitive([], 0, QQ) == (0, [])
    assert dmp_ground_primitive([QQ(1)], 0, QQ) == (1, [1])
    assert dmp_ground_primitive([QQ(1), QQ(1)], 0, QQ) == (1, [1, 1])
    assert dmp_ground_primitive([QQ(2), QQ(2)], 0, QQ) == (2, [1, 1])
    assert dmp_ground_primitive([QQ(1), QQ(2), QQ(1)], 0, QQ) == (1, [1, 2, 1])
    assert dmp_ground_primitive([QQ(2), QQ(4), QQ(2)], 0, QQ) == (2, [1, 2, 1])
    assert dmp_ground_primitive([QQ(6), QQ(8), QQ(12)], 0, QQ) == (2, [3, 4, 6])

    assert dmp_ground_primitive([QQ(2, 3), QQ(4, 9)], 0, QQ) == (QQ(2, 9), [3, 2])
    assert dmp_ground_primitive([QQ(2, 3), QQ(4, 5)], 0, QQ) == (QQ(2, 15), [5, 6])

    assert dmp_ground_primitive([[]], 1, ZZ) == (0, [[]])

    assert dmp_ground_primitive(f_0, 2, ZZ) == (1, f_0)
    assert dmp_ground_primitive(dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2, ZZ) == (2, f_0)

    assert dmp_ground_primitive(f_1, 2, ZZ) == (1, f_1)
    assert dmp_ground_primitive(dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2, ZZ) == (3, f_1)

    assert dmp_ground_primitive(f_2, 2, ZZ) == (1, f_2)
    assert dmp_ground_primitive(dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2, ZZ) == (4, f_2)

    assert dmp_ground_primitive(f_3, 2, ZZ) == (1, f_3)
    assert dmp_ground_primitive(dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2, ZZ) == (5, f_3)

    assert dmp_ground_primitive(f_4, 2, ZZ) == (1, f_4)
    assert dmp_ground_primitive(dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2, ZZ) == (6, f_4)

    assert dmp_ground_primitive(f_5, 2, ZZ) == (1, f_5)
    assert dmp_ground_primitive(dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2, ZZ) == (7, f_5)

    assert dmp_ground_primitive(f_6, 3, ZZ) == (1, f_6)
    assert dmp_ground_primitive(dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3, ZZ) == (8, f_6)

    assert dmp_ground_primitive([[ZZ(2)]], 1, ZZ) == (2, [[1]])
    assert dmp_ground_primitive([[QQ(2)]], 1, QQ) == (2, [[1]])

    assert dmp_ground_primitive([[QQ(2, 3)], [QQ(4, 9)]], 1, QQ) == (QQ(2, 9), [[3], [2]])
    assert dmp_ground_primitive([[QQ(2, 3)], [QQ(4, 5)]], 1, QQ) == (QQ(2, 15), [[5], [6]])
Exemple #5
0
def test_dmp_ground_primitive():
    assert dmp_ground_primitive([[]], 1, ZZ) == (ZZ(0), [[]])

    assert dmp_ground_primitive(f_0, 2, ZZ) == (ZZ(1), f_0)
    assert dmp_ground_primitive(dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2,
                                ZZ) == (ZZ(2), f_0)

    assert dmp_ground_primitive(f_1, 2, ZZ) == (ZZ(1), f_1)
    assert dmp_ground_primitive(dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2,
                                ZZ) == (ZZ(3), f_1)

    assert dmp_ground_primitive(f_2, 2, ZZ) == (ZZ(1), f_2)
    assert dmp_ground_primitive(dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2,
                                ZZ) == (ZZ(4), f_2)

    assert dmp_ground_primitive(f_3, 2, ZZ) == (ZZ(1), f_3)
    assert dmp_ground_primitive(dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2,
                                ZZ) == (ZZ(5), f_3)

    assert dmp_ground_primitive(f_4, 2, ZZ) == (ZZ(1), f_4)
    assert dmp_ground_primitive(dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2,
                                ZZ) == (ZZ(6), f_4)

    assert dmp_ground_primitive(f_5, 2, ZZ) == (ZZ(1), f_5)
    assert dmp_ground_primitive(dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2,
                                ZZ) == (ZZ(7), f_5)

    assert dmp_ground_primitive(f_6, 3, ZZ) == (ZZ(1), f_6)
    assert dmp_ground_primitive(dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3,
                                ZZ) == (ZZ(8), f_6)

    assert dmp_ground_primitive([[ZZ(2)]], 1, ZZ) == (ZZ(2), [[ZZ(1)]])
    assert dmp_ground_primitive([[QQ(2)]], 1, QQ) == (QQ(2), [[QQ(1)]])

    assert dmp_ground_primitive([[QQ(2, 3)], [QQ(4, 9)]], 1,
                                QQ) == (QQ(2, 9), [[QQ(3)], [QQ(2)]])
    assert dmp_ground_primitive([[QQ(2, 3)], [QQ(4, 5)]], 1,
                                QQ) == (QQ(2, 15), [[QQ(5)], [QQ(6)]])
Exemple #6
0
def dmp_zz_heu_gcd(f, g, u, K):
    """
    Heuristic polynomial GCD in `Z[X]`.

    Given univariate polynomials `f` and `g` in `Z[X]`, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation. The evaluation proces reduces f and g variable by
    variable into a large integer.  The final step is to verify if the
    interpolated polynomial is the correct GCD. This gives cofactors of
    the input polynomials as a side effect.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y, = ring("x,y", ZZ)

    >>> f = x**2 + 2*x*y + y**2
    >>> g = x**2 + x*y

    >>> R.dmp_zz_heu_gcd(f, g)
    (x + y, x + y, x)

    References
    ==========

    .. [1] [Liao95]_
    """
    if not u:
        return dup_zz_heu_gcd(f, g, K)

    result = _dmp_rr_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    gcd, f, g = dmp_ground_extract(f, g, u, K)

    f_norm = dmp_max_norm(f, u, K)
    g_norm = dmp_max_norm(g, u, K)

    B = K(2 * min(f_norm, g_norm) + 29)

    x = max(
        min(B, 99 * K.sqrt(B)),
        2 * min(f_norm // abs(dmp_ground_LC(f, u, K)),
                g_norm // abs(dmp_ground_LC(g, u, K))) + 2)

    for i in range(0, HEU_GCD_MAX):
        ff = dmp_eval(f, x, u, K)
        gg = dmp_eval(g, x, u, K)

        v = u - 1

        if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
            h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)

            h = _dmp_zz_gcd_interpolate(h, x, v, K)
            h = dmp_ground_primitive(h, u, K)[1]

            cff_, r = dmp_div(f, h, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg_

            cff = _dmp_zz_gcd_interpolate(cff, x, v, K)

            h, r = dmp_div(f, cff, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff, cfg_

            cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)

            h, r = dmp_div(g, cfg, u, K)

            if dmp_zero_p(r, u):
                cff_, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg

        x = 73794 * x * K.sqrt(K.sqrt(x)) // 27011

    raise HeuristicGCDFailed('no luck')
Exemple #7
0
def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from diofant.polys import ring, ZZ

        >>> R, x,y = ring("x,y", ZZ)

        >>> R.dmp_zz_factor(2*x**2 - 2*y**2)
        (2, [(x - y, 1), (x + y, 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    References
    ==========

    .. [1] [Gathen99]_
    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all(d <= 0 for d in dmp_degree_list(g, u)):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)
        factors = dmp_trial_division(f, H, u, K)

    for g, k in dmp_zz_factor(G, u - 1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
Exemple #8
0
def dmp_zz_wang(f, u, K, mod=None, seed=None):
    """
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is
    primitive and square-free in `x_1`, computes factorization of `f` into
    irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate polynomial
    in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.  The
    mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`,
    which can be factored efficiently using Zassenhaus algorithm. The last
    step is to lift univariate factors to obtain true multivariate
    factors. For this purpose a parallel Hensel lifting procedure is used.

    The parameter ``seed`` is passed to _randint and can be used to seed randint
    (when an integer) or (for testing purposes) can be a sequence of numbers.

    References
    ==========

    .. [1] [Wang78]_
    .. [2] [Geddes92]_
    """
    from diofant.utilities.randtest import _randint

    randint = _randint(seed)

    ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set(), [], [K.zero] * u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in range(eez_num_tries):
            A = [K(randint(-mod, mod)) for _ in range(u)]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r:  # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]
    orig_f = f

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors:  # pragma: no cover
        if query('EEZ_RESTART_IF_NEEDED'):
            return dmp_zz_wang(orig_f, u, K, mod + 1)
        else:
            raise ExtraneousFactors(
                "we need to restart algorithm with better parameters")

    negative, result = 0, []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result
Exemple #9
0
def dmp_factor_list(f, u, K0):
    """Factor polynomials into irreducibles in `K[X]`. """
    if not u:
        return dup_factor_list(f, K0)

    J, f = dmp_terms_gcd(f, u, K0)
    cont, f = dmp_ground_primitive(f, u, K0)

    if K0.is_FiniteField:  # pragma: no cover
        coeff, factors = dmp_gf_factor(f, u, K0)
    elif K0.is_Algebraic:
        coeff, factors = dmp_ext_factor(f, u, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dmp_convert(f, u, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.has_Field:
            K = K0.get_ring()

            denom, f = dmp_clear_denoms(f, u, K0, K)
            f = dmp_convert(f, u, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            levels, f, v = dmp_exclude(f, u, K)
            coeff, factors = dmp_zz_factor(f, v, K)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_include(f, levels, v, K), k)
        elif K.is_Poly:
            f, v = dmp_inject(f, u, K)

            coeff, factors = dmp_factor_list(f, v, K.domain)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, v, K), k)

            coeff = K.convert(coeff, K.domain)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.has_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_convert(f, u, K, K0), k)

            coeff = K0.convert(coeff, K)

            if K0_inexact is None:
                coeff = coeff / denom
            else:
                for i, (f, k) in enumerate(factors):
                    f = dmp_quo_ground(f, denom, u, K0)
                    f = dmp_convert(f, u, K0, K0_inexact)
                    factors[i] = (f, k)

                coeff = K0_inexact.convert(coeff * denom**i, K0)
                K0 = K0_inexact

    for i, j in enumerate(reversed(J)):
        if not j:
            continue

        term = {(0, ) * (u - i) + (1, ) + (0, ) * i: K0.one}
        factors.insert(0, (dmp_from_dict(term, u, K0), j))

    return coeff * cont, _sort_factors(factors)