Exemple #1
0
def _process_limits(*symbols):
    """Process the list of symbols and convert them to canonical limits,
    storing them as Tuple(symbol, lower, upper). The orientation of
    the function is also returned when the upper limit is missing
    so (x, 1, None) becomes (x, None, 1) and the orientation is changed.
    """
    limits = []
    orientation = 1
    for V in symbols:
        if isinstance(V, (Dummy, Symbol)):
            limits.append(Tuple(V))
            continue
        elif is_sequence(V, Tuple):
            V = sympify(flatten(V))
            if V[0].is_Symbol:
                newsymbol = V[0]
                if len(V) == 2 and isinstance(V[1], Interval):
                    V[1:] = [V[1].start, V[1].end]

                if len(V) == 3:
                    if V[1] is None and V[2] is not None:
                        nlim = [V[2]]
                    elif V[1] is not None and V[2] is None:
                        orientation *= -1
                        nlim = [V[1]]
                    elif V[1] is None and V[2] is None:
                        nlim = []
                    else:
                        nlim = V[1:]
                    limits.append(Tuple(newsymbol, *nlim))
                    continue
                elif len(V) == 1 or (len(V) == 2 and V[1] is None):
                    limits.append(Tuple(newsymbol))
                    continue
                elif len(V) == 2:
                    limits.append(Tuple(newsymbol, V[1]))
                    continue

        raise ValueError('Invalid limits given: %s' % str(symbols))

    return limits, orientation
Exemple #2
0
def smoothness_p(n, m=-1, power=0, visual=None):
    """
    Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...]
    where:

    1. p**M is the base-p divisor of n
    2. sm(p + m) is the smoothness of p + m (m = -1 by default)
    3. psm(p + m) is the power smoothness of p + m

    The list is sorted according to smoothness (default) or by power smoothness
    if power=1.

    The smoothness of the numbers to the left (m = -1) or right (m = 1) of a
    factor govern the results that are obtained from the p +/- 1 type factoring
    methods.

        >>> from diofant.ntheory.factor_ import smoothness_p, factorint
        >>> smoothness_p(10431, m=1)
        (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
        >>> smoothness_p(10431)
        (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
        >>> smoothness_p(10431, power=1)
        (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])

    If visual=True then an annotated string will be returned:

        >>> print(smoothness_p(21477639576571, visual=1))
        p**i=4410317**1 has p-1 B=1787, B-pow=1787
        p**i=4869863**1 has p-1 B=2434931, B-pow=2434931

    This string can also be generated directly from a factorization dictionary
    and vice versa:

        >>> f = factorint(17*9)
        >>> f == {3: 2, 17: 1}
        True
        >>> smoothness_p(f)
        'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16'
        >>> smoothness_p(_) == {3: 2, 17: 1}
        True

    The table of the output logic is:

        ====== ====== ======= =======
        |              Visual
        ------ ----------------------
        Input  True   False   other
        ====== ====== ======= =======
        dict    str    tuple   str
        str     str    tuple   dict
        tuple   str    tuple   str
        n       str    tuple   tuple
        mul     str    tuple   tuple
        ====== ====== ======= =======

    See Also
    ========

    factorint, smoothness
    """
    from diofant.utilities import flatten

    # visual must be True, False or other (stored as None)
    if visual in (1, 0):
        visual = bool(visual)
    elif visual not in (True, False):
        visual = None

    if type(n) is str:
        if visual:
            return n
        d = {}
        for li in n.splitlines():
            k, v = [
                int(i) for i in li.split('has')[0].split('=')[1].split('**')
            ]
            d[k] = v
        if visual is not True and visual is not False:
            return d
        return smoothness_p(d, visual=False)
    elif type(n) is not tuple:
        facs = factorint(n, visual=False)

    if power:
        k = -1
    else:
        k = 1
    if type(n) is not tuple:
        rv = (m,
              sorted([(f, tuple([M] + list(smoothness(f + m))))
                      for f, M in [i for i in facs.items()]],
                     key=lambda x: (x[1][k], x[0])))
    else:
        rv = n

    if visual is False or (visual is not True) and (type(n) in [int, Mul]):
        return rv
    lines = []
    for dat in rv[1]:
        dat = flatten(dat)
        dat.insert(2, m)
        lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat))
    return '\n'.join(lines)
Exemple #3
0
 def _eval_transpose(self):
     if all([x.is_extended_real for x in flatten(self.limits)]):
         return self.func(self.function.transpose(), *self.limits)
     return
Exemple #4
0
 def _eval_conjugate(self):
     if all([x.is_extended_real for x in flatten(self.limits)]):
         return self.func(self.function.conjugate(), *self.limits)
     return
Exemple #5
0
 def _eval_adjoint(self):
     if all([x.is_extended_real for x in flatten(self.limits)]):
         return self.func(self.function.adjoint(), *self.limits)
     return