Exemple #1
0
def test_meijerg_eval():
    a = randcplx()
    arg = x*exp_polar(k*pi*I)
    expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
    expr2 = besseli(a, arg)

    # Test that the two expressions agree for all arguments.
    for x_ in [0.5, 1.5]:
        for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: k_}, strict=False)) < 1e-10
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: -k_}, strict=False)) < 1e-10

    # Test continuity independently
    eps = 1e-13
    expr2 = expr1.subs({k: l})
    for x_ in [0.5, 1.5]:
        for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10

    expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
            + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
        / (2*sqrt(pi))
    assert (expr - pi/exp(1)).evalf(chop=True) == 0
Exemple #2
0
def test_matplotlib_advanced():
    """Examples from the 'advanced' notebook."""
    try:
        name = 'test'
        tmp_file = TmpFileManager.tmp_file

        s = summation(1 / x**y, (x, 1, oo))
        p = plot(s, (y, 2, 10))
        p.save(tmp_file('%s_advanced_inf_sum' % name))

        p = plot(summation(1 / x, (x, 1, y)), (y, 2, 10), show=False)
        p[0].only_integers = True
        p[0].steps = True
        p.save(tmp_file('%s_advanced_fin_sum' % name))

        ###
        # Test expressions that can not be translated to np and
        # generate complex results.
        ###
        plot(sin(x) + I * cos(x)).save(tmp_file())
        plot(sqrt(sqrt(-x))).save(tmp_file())
        plot(LambertW(x)).save(tmp_file())
        plot(sqrt(LambertW(x))).save(tmp_file())

        # Characteristic function of a StudentT distribution with nu=10
        plot((meijerg(
            ((1 / 2, ), ()),
            ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I * pi) / 2) + meijerg(
                ((1 / 2, ), ()),
                ((5, 0, 1 / 2),
                 ()), 5 * x**2 * exp_polar(I * pi) / 2)) / (48 * pi),
             (x, 1e-6, 1e-2)).save(tmp_file())
    finally:
        TmpFileManager.cleanup()
Exemple #3
0
def test_functions():
    g = WildFunction('g')
    p = Wild('p')
    q = Wild('q')

    f = cos(5 * x)
    notf = x
    assert f.match(p * cos(q * x)) == {p: 1, q: 5}
    assert f.match(p * g) == {p: 1, g: cos(5 * x)}
    assert notf.match(g) is None

    F = WildFunction('F', nargs=2)
    assert F.nargs == FiniteSet(2)
    f = Function('f')
    assert f(x).match(F) is None

    F = WildFunction('F', nargs=(1, 2))
    assert F.nargs == FiniteSet(1, 2)

    # issue sympy/sympy#2711
    f = meijerg(((), ()), ((0, ), ()), x)
    a = Wild('a')
    b = Wild('b')

    assert f.find(a) == {
        0: 1,
        x: 1,
        meijerg(((), ()), ((0, ), ()), x): 1,
        (): 3,
        (0, ): 1,
        ((), ()): 1,
        ((0, ), ()): 1
    }
    assert f.find(a + b) == {0: 1, x: 1, meijerg(((), ()), ((0, ), ()), x): 1}
    assert f.find(a**2) == {x: 1, meijerg(((), ()), ((0, ), ()), x): 1}
Exemple #4
0
def can_do_meijer(a1, a2, b1, b2, numeric=True):
    """
    This helper function tries to hyperexpand() the meijer g-function
    corresponding to the parameters a1, a2, b1, b2.
    It returns False if this expansion still contains g-functions.
    If numeric is True, it also tests the so-obtained formula numerically
    (at random values) and returns False if the test fails.
    Else it returns True.
    """
    from diofant import unpolarify, expand
    r = hyperexpand(meijerg(a1, a2, b1, b2, z))
    if r.has(meijerg):
        return False
    # NOTE hyperexpand() returns a truly branched function, whereas numerical
    #      evaluation only works on the main branch. Since we are evaluating on
    #      the main branch, this should not be a problem, but expressions like
    #      exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get
    #      rid of them. The expand heuristically does this...
    r = unpolarify(expand(r, force=True, power_base=True, power_exp=False,
                          mul=False, log=False, multinomial=False, basic=False))

    if not numeric:
        return True

    repl = {}
    for n, a in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - {z}):
        repl[a] = randcplx(n)
    return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
def can_do_meijer(a1, a2, b1, b2, numeric=True):
    """
    This helper function tries to hyperexpand() the meijer g-function
    corresponding to the parameters a1, a2, b1, b2.
    It returns False if this expansion still contains g-functions.
    If numeric is True, it also tests the so-obtained formula numerically
    (at random values) and returns False if the test fails.
    Else it returns True.
    """
    r = hyperexpand(meijerg(a1, a2, b1, b2, z))
    if r.has(meijerg):
        return False
    # NOTE hyperexpand() returns a truly branched function, whereas numerical
    #      evaluation only works on the main branch. Since we are evaluating on
    #      the main branch, this should not be a problem, but expressions like
    #      exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get
    #      rid of them. The expand heuristically does this...
    r = unpolarify(expand(r, force=True, power_base=True, power_exp=False,
                          mul=False, log=False, multinomial=False, basic=False))

    if not numeric:
        return True

    repl = {}
    for n, a in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - {z}):
        repl[a] = randcplx(n)
    return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
Exemple #6
0
def test_K():
    assert K(0) == pi/2
    assert K(Rational(1, 2)) == 8*pi**Rational(3, 2)/gamma(-Rational(1, 4))**2
    assert K(1) == zoo
    assert K(-1) == gamma(Rational(1, 4))**2/(4*sqrt(2*pi))
    assert K(oo) == 0
    assert K(-oo) == 0
    assert K(I*oo) == 0
    assert K(-I*oo) == 0
    assert K(zoo) == 0

    assert K(z).diff(z) == (E(z) - (1 - z)*K(z))/(2*z*(1 - z))
    assert td(K(z), z)
    pytest.raises(ArgumentIndexError, lambda: K(z).fdiff(2))

    zi = Symbol('z', extended_real=False)
    assert K(zi).conjugate() == K(zi.conjugate())
    zr = Symbol('z', extended_real=True, negative=True)
    assert K(zr).conjugate() == K(zr)

    assert K(z).rewrite(hyper) == \
        (pi/2)*hyper((S.Half, S.Half), (S.One,), z)
    assert tn(K(z), (pi/2)*hyper((S.Half, S.Half), (S.One,), z))
    assert K(z).rewrite(meijerg) == \
        meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2
    assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2)

    assert K(z).series(z) == pi/2 + pi*z/8 + 9*pi*z**2/128 + \
        25*pi*z**3/512 + 1225*pi*z**4/32768 + 3969*pi*z**5/131072 + O(z**6)
def test_cosine_transform():
    f = Function("f")

    # Test unevaluated form
    assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
    assert inverse_cosine_transform(
        f(w), w, t) == InverseCosineTransform(f(w), w, t)

    assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
    assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t)

    assert cosine_transform(1/(
        a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a)

    assert cosine_transform(t**(
        -a), t, w) == 2**(-a + Rational(1, 2))*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2)
    assert inverse_cosine_transform(2**(-a +
                                        Rational(1, 2))*w**(a - 1)*gamma(-a/2 + Rational(1, 2))/gamma(a/2), w, t) == t**(-a)

    assert cosine_transform(
        exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2))
    assert inverse_cosine_transform(
        sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)

    assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt(
        t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2))

    assert cosine_transform(1/(a + t), t, w) == sqrt(2)*(
        (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi)
    assert inverse_cosine_transform(sqrt(2)*meijerg(((Rational(1, 2), 0), ()), (
        (Rational(1, 2), 0, 0), (Rational(1, 2),)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t)

    assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg(
        ((Rational(1, 2),), ()), ((0, 0), (Rational(1, 2),)), a**2*w**2/4)/(2*sqrt(pi))
    assert inverse_cosine_transform(sqrt(2)*meijerg(((Rational(1, 2),), ()), ((0, 0), (Rational(1, 2),)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(a*sqrt(1 + t**2/a**2))
Exemple #8
0
def test_matplotlib_advanced():
    """Examples from the 'advanced' notebook."""
    try:
        name = 'test'
        tmp_file = TmpFileManager.tmp_file

        s = summation(1/x**y, (x, 1, oo))
        p = plot(s, (y, 2, 10))
        p.save(tmp_file('%s_advanced_inf_sum' % name))

        p = plot(summation(1/x, (x, 1, y)), (y, 2, 10), show=False)
        p[0].only_integers = True
        p[0].steps = True
        p.save(tmp_file('%s_advanced_fin_sum' % name))

        ###
        # Test expressions that can not be translated to np and
        # generate complex results.
        ###
        plot(sin(x) + I*cos(x)).save(tmp_file())
        plot(sqrt(sqrt(-x))).save(tmp_file())
        plot(LambertW(x)).save(tmp_file())
        plot(sqrt(LambertW(x))).save(tmp_file())

        # Characteristic function of a StudentT distribution with nu=10
        plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()),
                      5 * x**2 * exp_polar(-I*pi)/2)
              + meijerg(((1/2,), ()), ((5, 0, 1/2), ()),
                        5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file())
    finally:
        TmpFileManager.cleanup()
Exemple #9
0
def test_meijerg_eval():
    a = randcplx()
    arg = x*exp_polar(k*pi*I)
    expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4)
    expr2 = besseli(a, arg)

    # Test that the two expressions agree for all arguments.
    for x_ in [0.5, 1.5]:
        for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]:
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: k_}, strict=False)) < 1e-10
            assert abs((expr1 - expr2).evalf(subs={x: x_, k: -k_}, strict=False)) < 1e-10

    # Test continuity independently
    eps = 1e-13
    expr2 = expr1.subs({k: l})
    for x_ in [0.5, 1.5]:
        for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]:
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10
            assert abs((expr1 - expr2).evalf(
                       subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10

    expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4)
            + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \
        / (2*sqrt(pi))
    assert (expr - pi/exp(1)).evalf(chop=True) == 0
def test_expint():
    assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
                y**(x - 1)*uppergamma(1 - x, y), x)
    assert mytd(
        expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
    assert mytd(expint(x, y), -expint(x - 1, y), y)
    assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
                -Ei(x*polar_lift(-1)) + I*pi, x)

    assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
        + 24*exp(-x)/x**4 + 24*exp(-x)/x**5
    assert expint(-Rational(3, 2), x) == \
        exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \
        + 3*sqrt(pi)/(4*x**Rational(5, 2))

    assert tn_branch(expint, 1)
    assert tn_branch(expint, 2)
    assert tn_branch(expint, 3)
    assert tn_branch(expint, 1.7)
    assert tn_branch(expint, pi)

    assert expint(y, x*exp_polar(2*I*pi)) == \
        x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(y, x*exp_polar(-2*I*pi)) == \
        x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
    assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
    assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
    assert (expint(n, x*exp_polar(2*I*pi)) ==
            expint(n, x*exp_polar(2*I*pi), evaluate=False))

    assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
    assert (expint(2, x, evaluate=False).rewrite(Shi) ==
            expint(2, x, evaluate=False))
    assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
    assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
                -Ci(x) + I*Si(x) - I*pi/2, x)

    assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
                -x*E1(x) + exp(-x), x)
    assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
                x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)

    assert expint(Rational(3, 2), z).nseries(z, n=10) == \
        2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
        2*sqrt(pi)*sqrt(z) + O(z**6)

    assert E1(z).series(z) == -EulerGamma - log(z) + z - \
        z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)

    assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \
        z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \
        z**5/240 + O(z**6)
    assert (expint(x, x).series(x, x0=1, n=2) ==
            expint(1, 1) + (x - 1)*(-meijerg(((), (1, 1)),
                                             ((0, 0, 0), ()), 1) - 1/E) +
            O((x - 1)**2, (x, 1)))

    pytest.raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3))
Exemple #11
0
def test_limits():
    k, x = symbols('k, x')
    assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \
        hyper((1,), (Rational(4, 3), Rational(5, 3)), 0) + \
        9*k**2*hyper((2,), (Rational(7, 3), Rational(8, 3)), 0)/20 + \
        81*k**4*hyper((3,), (Rational(10, 3), Rational(11, 3)), 0)/1120 + \
        O(k**6)  # issue sympy/sympy#6350
    assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \
        meijerg(((), ()), ((1,), (0,)), 0)  # issue sympy/sympy#6052
Exemple #12
0
def test_limits():
    k, x = symbols('k, x')
    assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \
        hyper((1,), (Rational(4, 3), Rational(5, 3)), 0) + \
        9*k**2*hyper((2,), (Rational(7, 3), Rational(8, 3)), 0)/20 + \
        81*k**4*hyper((3,), (Rational(10, 3), Rational(11, 3)), 0)/1120 + \
        O(k**6)  # issue sympy/sympy#6350
    assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \
        meijerg(((), ()), ((1,), (0,)), 0)  # issue sympy/sympy#6052
Exemple #13
0
def test_sympyissue_2711():
    f = meijerg(((), ()), ((0,), ()), x)
    a = Wild('a')
    b = Wild('b')

    assert f.find(a) == {0: 1, x: 1, meijerg(((), ()), ((0,), ()), x): 1,
                         (): 3, (0,): 1, ((), ()): 1, ((0,), ()): 1}
    assert f.find(a + b) == {0: 1, x: 1, meijerg(((), ()), ((0,), ()), x): 1}
    assert f.find(a**2) == {x: 1, meijerg(((), ()), ((0,), ()), x): 1}
Exemple #14
0
def test_cse_not_possible():
    # No substitution possible.
    e = Add(x, y)
    substs, reduced = cse([e])
    assert substs == []
    assert reduced == [x + y]
    # issue sympy/sympy#6329
    eq = (meijerg((1, 2), (y, 4), (5, ), [], x) + meijerg((1, 3), (y, 4),
                                                          (5, ), [], x))
    assert cse(eq) == ([], [eq])
Exemple #15
0
def test_sympyissue_2711():
    f = meijerg(((), ()), ((0, ), ()), x)
    a = Wild('a')
    b = Wild('b')

    assert f.find(a) == {(S.Zero, ), ((), ()), ((S.Zero, ), ()), x, S.Zero, (),
                         meijerg(((), ()), ((S.Zero, ), ()), x)}
    assert f.find(a + b) == \
        {meijerg(((), ()), ((S.Zero,), ()), x), x, S.Zero}
    assert f.find(a**2) == {meijerg(((), ()), ((S.Zero, ), ()), x), x}
def test_meijerg_shift_operators():
    # carefully set up the parameters. XXX this still fails sometimes
    a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 = (randcplx(n) for n in range(10))
    g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)

    assert tn(MeijerShiftA(b1).apply(g, op),
              meijerg([a1], [a3, a4], [b1 + 1], [b3, b4], z), z)
    assert tn(MeijerShiftB(a1).apply(g, op),
              meijerg([a1 - 1], [a3, a4], [b1], [b3, b4], z), z)
    assert tn(MeijerShiftC(b3).apply(g, op),
              meijerg([a1], [a3, a4], [b1], [b3 + 1, b4], z), z)
    assert tn(MeijerShiftD(a3).apply(g, op),
              meijerg([a1], [a3 - 1, a4], [b1], [b3, b4], z), z)

    s = MeijerUnShiftA([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3, a4], [b1 - 1], [b3, b4], z), z)

    s = MeijerUnShiftC([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3, a4], [b1], [b3 - 1, b4], z), z)

    s = MeijerUnShiftB([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1 + 1], [a3, a4], [b1], [b3, b4], z), z)

    s = MeijerUnShiftD([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3 + 1, a4], [b1], [b3, b4], z), z)
Exemple #17
0
def test_meijerg_shift_operators():
    # carefully set up the parameters. XXX this still fails sometimes
    a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 = (randcplx(n) for n in range(10))
    g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)

    assert tn(MeijerShiftA(b1).apply(g, op),
              meijerg([a1], [a3, a4], [b1 + 1], [b3, b4], z), z)
    assert tn(MeijerShiftB(a1).apply(g, op),
              meijerg([a1 - 1], [a3, a4], [b1], [b3, b4], z), z)
    assert tn(MeijerShiftC(b3).apply(g, op),
              meijerg([a1], [a3, a4], [b1], [b3 + 1, b4], z), z)
    assert tn(MeijerShiftD(a3).apply(g, op),
              meijerg([a1], [a3 - 1, a4], [b1], [b3, b4], z), z)

    s = MeijerUnShiftA([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3, a4], [b1 - 1], [b3, b4], z), z)

    s = MeijerUnShiftC([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3, a4], [b1], [b3 - 1, b4], z), z)

    s = MeijerUnShiftB([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1 + 1], [a3, a4], [b1], [b3, b4], z), z)

    s = MeijerUnShiftD([a1], [a3, a4], [b1], [b3, b4], 0, z)
    assert tn(
        s.apply(g, op), meijerg([a1], [a3 + 1, a4], [b1], [b3, b4], z), z)
Exemple #18
0
def test_gh_issue_2711():
    x = Symbol('x')
    f = meijerg(((), ()), ((0, ), ()), x)
    a = Wild('a')
    b = Wild('b')

    assert f.find(a) == {(S.Zero, ), ((), ()), ((S.Zero, ), ()), x, S.Zero, (),
                         meijerg(((), ()), ((S.Zero, ), ()), x)}
    assert f.find(a + b) == \
        {meijerg(((), ()), ((S.Zero,), ()), x), x, S.Zero}
    assert f.find(a**2) == {meijerg(((), ()), ((S.Zero, ), ()), x), x}
Exemple #19
0
def test_cosine_transform():
    from diofant import Si, Ci

    t = symbols("t")
    w = symbols("w")
    a = symbols("a")
    f = Function("f")

    # Test unevaluated form
    assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
    assert inverse_cosine_transform(f(w), w,
                                    t) == InverseCosineTransform(f(w), w, t)

    assert cosine_transform(1 / sqrt(t), t, w) == 1 / sqrt(w)
    assert inverse_cosine_transform(1 / sqrt(w), w, t) == 1 / sqrt(t)

    assert cosine_transform(1 / (a**2 + t**2), t,
                            w) == sqrt(2) * sqrt(pi) * exp(-a * w) / (2 * a)

    assert cosine_transform(
        t**(-a), t, w) == 2**(-a + Rational(1, 2)) * w**(a - 1) * gamma(
            (-a + 1) / 2) / gamma(a / 2)
    assert inverse_cosine_transform(
        2**(-a + Rational(1, 2)) * w**(a - 1) *
        gamma(-a / 2 + Rational(1, 2)) / gamma(a / 2), w, t) == t**(-a)

    assert cosine_transform(exp(-a * t), t,
                            w) == sqrt(2) * a / (sqrt(pi) * (a**2 + w**2))
    assert inverse_cosine_transform(
        sqrt(2) * a / (sqrt(pi) * (a**2 + w**2)), w, t) == exp(-a * t)

    assert cosine_transform(exp(-a * sqrt(t)) * cos(a * sqrt(t)), t,
                            w) == a * exp(-a**2 /
                                          (2 * w)) / (2 * w**Rational(3, 2))

    assert cosine_transform(
        1 / (a + t), t,
        w) == sqrt(2) * ((-2 * Si(a * w) + pi) * sin(a * w) / 2 -
                         cos(a * w) * Ci(a * w)) / sqrt(pi)
    assert inverse_cosine_transform(
        sqrt(2) * meijerg(((Rational(1, 2), 0), ()),
                          ((Rational(1, 2), 0, 0),
                           (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * pi), w,
        t) == 1 / (a + t)

    assert cosine_transform(1 / sqrt(a**2 + t**2), t, w) == sqrt(2) * meijerg(
        ((Rational(1, 2), ), ()),
        ((0, 0), (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * sqrt(pi))
    assert inverse_cosine_transform(
        sqrt(2) * meijerg(
            ((Rational(1, 2), ), ()),
            ((0, 0), (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * sqrt(pi)), w,
        t) == 1 / (a * sqrt(1 + t**2 / a**2))
def test_plan():
    assert devise_plan(Hyper_Function([0], ()), Hyper_Function([0], ()),
                       z) == []
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z)
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z)
    with pytest.raises(ValueError):
        devise_plan(Hyper_Function([2], []),
                    Hyper_Function([Rational(1, 2)], []), z)

    # We cannot use pi/(10000 + n) because polys is insanely slow.
    a1, a2, b1 = (randcplx(n) for n in range(3))
    b1 += 2 * I
    h = hyper([a1, a2], [b1], z)

    h2 = hyper((a1 + 1, a2), [b1], z)
    assert tn(
        apply_operators(
            h,
            devise_plan(Hyper_Function((a1 + 1, a2), [b1]),
                        Hyper_Function((a1, a2), [b1]), z), op), h2, z)

    h2 = hyper((a1 + 1, a2 - 1), [b1], z)
    assert tn(
        apply_operators(
            h,
            devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]),
                        Hyper_Function((a1, a2), [b1]), z), op), h2, z)

    m = meijerg(((0, ), ()), ((), ()), z)
    m2 = meijerg(((1, ), ()), ((), ()), z)
    assert tn(
        apply_operators(
            m,
            devise_plan_meijer(G_Function([0], [], [], []),
                               G_Function([1], [], [], []), z), op), m2, z)

    m2 = meijerg(((-1, ), ()), ((), ()), z)
    assert tn(
        apply_operators(
            m,
            devise_plan_meijer(G_Function([0], [], [], []),
                               G_Function([-1], [], [], []), z), op), m2, z)

    m = meijerg(((), (1, )), ((), ()), z)
    m2 = meijerg(((), (2, )), ((), ()), z)
    assert tn(
        apply_operators(
            m,
            devise_plan_meijer(G_Function([], [1], [], []),
                               G_Function([], [2], [], []), z), op), m2, z)
def test_elliptic_e():
    assert elliptic_e(z, 0) == z
    assert elliptic_e(0, m) == 0
    assert elliptic_e(i * pi / 2, m) == i * elliptic_e(m)
    assert elliptic_e(z, oo) == zoo
    assert elliptic_e(z, -oo) == zoo
    assert elliptic_e(0) == pi / 2
    assert elliptic_e(1) == 1
    assert elliptic_e(oo) == I * oo
    assert elliptic_e(-oo) == oo
    assert elliptic_e(zoo) == zoo

    assert elliptic_e(-z, m) == -elliptic_e(z, m)

    assert elliptic_e(z, m).diff(z) == sqrt(1 - m * sin(z)**2)
    assert elliptic_e(
        z, m).diff(m) == (elliptic_e(z, m) - elliptic_f(z, m)) / (2 * m)
    assert elliptic_e(z).diff(z) == (elliptic_e(z) - elliptic_k(z)) / (2 * z)
    r = randcplx()
    assert td(elliptic_e(r, m), m)
    assert td(elliptic_e(z, r), z)
    assert td(elliptic_e(z), z)
    pytest.raises(ArgumentIndexError, lambda: elliptic_e(z, m).fdiff(3))
    pytest.raises(ArgumentIndexError, lambda: elliptic_e(z).fdiff(2))

    mi = Symbol('m', extended_real=False)
    assert elliptic_e(z, mi).conjugate() == elliptic_e(z.conjugate(),
                                                       mi.conjugate())
    assert elliptic_e(mi).conjugate() == elliptic_e(mi.conjugate())
    mr = Symbol('m', extended_real=True, negative=True)
    assert elliptic_e(z, mr).conjugate() == elliptic_e(z.conjugate(), mr)
    assert elliptic_e(mr).conjugate() == elliptic_e(mr)
    assert elliptic_e(z, m).conjugate() == conjugate(elliptic_e(z, m))
    assert elliptic_e(z).conjugate() == conjugate(elliptic_e(z))

    assert elliptic_e(z).rewrite(hyper) == (pi / 2) * hyper(
        (Rational(-1, 2), Rational(1, 2)), (1, ), z)
    assert elliptic_e(z, m).rewrite(hyper) == elliptic_e(z, m)
    assert tn(elliptic_e(z), (pi / 2) * hyper(
        (Rational(-1, 2), Rational(1, 2)), (1, ), z))
    assert elliptic_e(z).rewrite(meijerg) == \
        -meijerg(((Rational(1, 2), Rational(3, 2)), []), ((0,), (0,)), -z)/4
    assert elliptic_e(z, m).rewrite(meijerg) == elliptic_e(z, m)
    assert tn(
        elliptic_e(z), -meijerg(((Rational(1, 2), Rational(3, 2)), []),
                                ((0, ), (0, )), -z) / 4)

    assert elliptic_e(z, m).series(z) == \
        z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
    assert elliptic_e(z).series(z) == pi/2 - pi*z/8 - 3*pi*z**2/128 - \
        5*pi*z**3/512 - 175*pi*z**4/32768 - 441*pi*z**5/131072 + O(z**6)
Exemple #22
0
def test_expand_func():
    # evaluation at 1 of Gauss' hypergeometric function:
    a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
    assert expand_func(hyper([a, b], [c], 1)) == \
        gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
    assert abs(expand_func(hyper([a1, b1], [c1], 1))
               - hyper([a1, b1], [c1], 1)).evalf(strict=False) < 1e-10

    # hyperexpand wrapper for hyper:
    assert expand_func(hyper([], [], z)) == exp(z)
    assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
    assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
    assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
        meijerg([[1, 1], []], [[], []], z)
Exemple #23
0
def test_expand_func():
    # evaluation at 1 of Gauss' hypergeometric function:
    a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
    assert expand_func(hyper([a, b], [c], 1)) == \
        gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
    assert abs(expand_func(hyper([a1, b1], [c1], 1))
               - hyper([a1, b1], [c1], 1)).evalf(strict=False) < 1e-10

    # hyperexpand wrapper for hyper:
    assert expand_func(hyper([], [], z)) == exp(z)
    assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
    assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
    assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
        meijerg([[1, 1], []], [[], []], z)
def test_meijerg_lookup():
    assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \
        z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z)
    assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \
        exp(z)*uppergamma(0, z)
    assert can_do_meijer([a], [], [b, a + 1], [])
    assert can_do_meijer([a], [], [b + 2, a], [])
    assert can_do_meijer([a], [], [b - 2, a], [])

    assert hyperexpand(meijerg([a], [], [a, a, a - Rational(1, 2)], [], z)) == \
        -sqrt(pi)*z**(a - Rational(1, 2))*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2)
                                           - 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \
        hyperexpand(meijerg([a], [], [a, a - Rational(1, 2), a], [], z)) == \
        hyperexpand(meijerg([a], [], [a - Rational(1, 2), a, a], [], z))
    assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], [])
Exemple #25
0
def test_meijerg_lookup():
    assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \
        z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z)
    assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \
        exp(z)*uppergamma(0, z)
    assert can_do_meijer([a], [], [b, a + 1], [])
    assert can_do_meijer([a], [], [b + 2, a], [])
    assert can_do_meijer([a], [], [b - 2, a], [])

    assert hyperexpand(meijerg([a], [], [a, a, a - Rational(1, 2)], [], z)) == \
        -sqrt(pi)*z**(a - Rational(1, 2))*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2)
                                           - 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \
        hyperexpand(meijerg([a], [], [a, a - Rational(1, 2), a], [], z)) == \
        hyperexpand(meijerg([a], [], [a - Rational(1, 2), a, a], [], z))
    assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], [])
Exemple #26
0
def test_lerchphi():
    from diofant import combsimp, exp_polar, polylog, log, lerchphi
    assert hyperexpand(hyper([1, a], [a + 1], z) / a) == lerchphi(z, 1, a)
    assert hyperexpand(hyper([1, a, a], [a + 1, a + 1], z) / a**2) == lerchphi(
        z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
        lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
        lerchphi(z, 10, a)
    assert combsimp(
        hyperexpand(meijerg([0, 1 - a], [], [0], [-a],
                            exp_polar(-I * pi) * z))) == lerchphi(z, 1, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 2, a)
    assert combsimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 3, a)

    assert hyperexpand(z * hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z * hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z * hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \
        -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do([1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b],
                  numerical=False)

    # test a bug
    from diofant import Abs
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1],
                             [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
        Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
Exemple #27
0
def test_meijerg_formulae():
    from diofant.simplify.hyperexpand import MeijerFormulaCollection
    formulae = MeijerFormulaCollection().formulae
    for sig in formulae:
        for formula in formulae[sig]:
            g = meijerg(formula.func.an, formula.func.ap,
                        formula.func.bm, formula.func.bq,
                        formula.z)
            rep = {}
            for sym in formula.symbols:
                rep[sym] = randcplx()

            # first test if the closed-form is actually correct
            g = g.subs(rep)
            closed_form = formula.closed_form.subs(rep)
            z = formula.z
            assert tn(g, closed_form, z)

            # now test the computed matrix
            cl = (formula.C * formula.B)[0].subs(rep)
            assert tn(closed_form, cl, z)
            deriv1 = z*formula.B.diff(z)
            deriv2 = formula.M * formula.B
            for d1, d2 in zip(deriv1, deriv2):
                assert tn(d1.subs(rep), d2.subs(rep), z)
Exemple #28
0
 def t(fac, arg):
     g = meijerg([a], [b], [c], [d], arg)*fac
     subs = {a: randcplx()/10, b: randcplx()/10 + I,
             c: randcplx(), d: randcplx()}
     integral = meijerint_indefinite(g, x)
     assert integral is not None
     assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
Exemple #29
0
def test_li():
    z = Symbol("z")
    zr = Symbol("z", extended_real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) == 0
    assert li(1) == -oo
    assert li(oo) == oo

    assert isinstance(li(z), li)

    assert diff(li(z), z) == 1/log(z)

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert conjugate(li(-zp)) == conjugate(li(-zp))
    assert conjugate(li(zn)) == conjugate(li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) == (log(z)*hyper((1, 1), (2, 2), log(z)) -
                                   log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))
Exemple #30
0
def test_meijerg_with_Floats():
    # see sympy/sympy#10681
    f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z)
    a = -2.3632718012073
    g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)),
                                  (Rational(5, 2),), z*exp_polar(I*pi))
    assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
Exemple #31
0
def test_erf():
    assert erf(nan) == nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_extended_real is False
    assert erf(w).is_extended_real is True
    assert erf(z).is_extended_real is None

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(1 / x).as_leading_term(x) == erf(1 / x)

    assert erf(z).rewrite('uppergamma') == sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half],
                                                    -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg([S.Half], [], [0],
                                                    [-S.Half], z**2) / sqrt(pi)
    assert erf(z).rewrite(
        'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1

    assert erf(x).as_real_imag() == \
        ((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
         I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
         erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
         re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))

    pytest.raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
Exemple #32
0
def test_branch_bug():
    assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -z**Rational(1, 3)*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) -
                             2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_branch_bug():
    assert hyperexpand(hyper((-Rational(1, 3), Rational(1, 2)), (Rational(2, 3), Rational(3, 2)), -z)) == \
        -cbrt(z)*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
        2*z**Rational(2, 3)*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) -
                             2*lowergamma(Rational(2, 3), z)/z**Rational(2, 3))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
Exemple #34
0
def test_diofantissue_149():
    a = Symbol('a', positive=True)
    expr = (2 - x)**a*sin(a/x)
    res = sqrt(pi)*a*meijerg(((), (a/2 + 1/2, a/2 + 1)),
                             ((0, 0, Rational(1, 2)), (Rational(-1, 2),)),
                             a**2/16)*gamma(a + 1)/4
    assert integrate(expr, (x, 0, 2)) == res
Exemple #35
0
def test_sympyissue_21202():
    res = (Piecewise(
        (s / (s**2 - 4), (4 * abs(s**-2) < 1) | (abs(s**2) / 4 < 1)),
        (pi * meijerg(((Rational(1, 2), ), (0, 0)),
                      ((0, Rational(1, 2)), (0, )), s**2 / 4) / 2, True)), 2,
           Ne(s**2 / 4, 1))
    assert laplace_transform(cosh(2 * x), x, s) == res
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I * oo) == -oo * I
    assert erfc(-I * oo) == oo * I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x
    assert erfc(erfinv(x)) == 1 - x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == 1
    assert erfc(1 / x).as_leading_term(x) == erfc(1 / x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I * erfi(I * z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], -z**2) / sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erfc(z).rewrite(
        'uppergamma') == 1 - sqrt(z**2) * erf(sqrt(z**2)) / z
    assert erfc(z).rewrite('expint') == 1 - sqrt(z**2) / z + z * expint(
        Rational(1, 2), z**2) / sqrt(pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
          erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
          I*(erfc(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
             erfc(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
          re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))
    assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag()
    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag()
    assert erfc(I).as_real_imag() == (1, -erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).taylor_term(3, x, *(-2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfc(x).limit(x, oo) == 0

    assert erfc(x).diff(x) == -2 * exp(-x**2) / sqrt(pi)
Exemple #37
0
 def t(fac, arg):
     g = meijerg([a], [b], [c], [d], arg)*fac
     subs = {a: randcplx()/10, b: randcplx()/10 + I,
             c: randcplx(), d: randcplx()}
     integral = meijerint_indefinite(g, x)
     assert integral is not None
     assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x)
Exemple #38
0
def test_sympyissue_2711():
    f = meijerg(((), ()), ((0, ), ()), x)
    a = Wild('a')
    b = Wild('b')

    assert f.find(a) == {
        0: 1,
        x: 1,
        meijerg(((), ()), ((0, ), ()), x): 1,
        (): 3,
        (0, ): 1,
        ((), ()): 1,
        ((0, ), ()): 1
    }
    assert f.find(a + b) == {0: 1, x: 1, meijerg(((), ()), ((0, ), ()), x): 1}
    assert f.find(a**2) == {x: 1, meijerg(((), ()), ((0, ), ()), x): 1}
Exemple #39
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
Exemple #40
0
def test_expand_func():
    # evaluation at 1 of Gauss' hypergeometric function:
    from diofant.abc import a, b, c
    from diofant import gamma, expand_func
    a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5
    assert expand_func(hyper([a, b], [c], 1)) == \
        gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c))
    assert abs(
        expand_func(hyper([a1, b1], [c1], 1)).n() -
        hyper([a1, b1], [c1], 1).n()) < 1e-10

    # hyperexpand wrapper for hyper:
    assert expand_func(hyper([], [], z)) == exp(z)
    assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z)
    assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1)
    assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \
        meijerg([[1, 1], []], [[], []], z)
Exemple #41
0
def test_sympyissue_8368():
    assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((-s/(pi*(-s**2 + 1)), Abs(s**2) < 1),
                                (1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), (meijerg(((Rational(1, 2),), (0, 0)),
                                                                                    ((0, Rational(1, 2)), (0,)), polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) -
                       1 > 0)), (Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True))
    assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
        Piecewise((pi*Piecewise((2/(pi*(2*s**2 - 2)), Abs(s**2) < 1),
                                (-2/(pi*s**2*(-2 + 2/s**2)), Abs(s**(-2)) < 1),
                                (meijerg(((0,), (Rational(-1, 2), Rational(1, 2))),
                                         ((0, Rational(1, 2)), (Rational(-1, 2),)),
                                         polar_lift(s)**2), True)),
                   And(Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, Ne(s**2, 1),
                       cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0)),
                  (Integral(E**(-s*x)*sinh(x), (x, 0, oo)), True))
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(+oo) == +oo
    assert erfi(-oo) == -oo

    assert erfi(0) == 0

    assert erfi(I * oo) == I
    assert erfi(-I * oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I * erfinv(x)) == I * x
    assert erfi(I * erfcinv(x)) == I * (1 - x)
    assert erfi(I * erf2inv(0, x)) == I * x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I * erf(I * z)
    assert erfi(z).rewrite('erfc') == I * erfc(I * z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I) * (
        fresnelc(z * (1 + I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 + I) / sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2 * z * hyper(
        [Rational(1, 2)], [Rational(3, 2)], z**2) / sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z * meijerg(
        [Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2) / sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (
        sqrt(-z**2) / z * (uppergamma(Rational(1, 2), -z**2) / sqrt(pi) - 1))
    assert erfi(z).rewrite('expint') == sqrt(-z**2) / z - z * expint(
        Rational(1, 2), -z**2) / sqrt(pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x)))/2 +
          erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))/2,
          I*(erfi(re(x) - I*re(x)*abs(im(x))/abs(re(x))) -
             erfi(re(x) + I*re(x)*abs(im(x))/abs(re(x)))) *
          re(x)*abs(im(x))/(2*im(x)*abs(re(x)))))
    assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag()
    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag()
    assert erfi(I).as_real_imag() == (0, erf(1))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))

    assert erfi(x).taylor_term(3, x, *(2 * x / sqrt(pi),
                                       0)) == 2 * x**3 / 3 / sqrt(pi)

    assert erfi(x).limit(x, oo) == oo
Exemple #43
0
 def t(a, b, arg, n):
     m1 = meijerg(a, b, arg)
     m2 = Mul(*_inflate_g(m1, n))
     # NOTE: (the random number)**9 must still be on the principal sheet.
     # Thus make b&d small to create random numbers of small imaginary part.
     return verify_numerically(m1.subs(subs),
                               m2.subs(subs),
                               x,
                               b=0.1,
                               d=-0.1)
def test_lerchphi():
    assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a)
    assert hyperexpand(
        hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
        lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
        lerchphi(z, 10, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a], [], [0],
                                        [-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0],
                                        [-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0],
                                        [-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a)

    assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + Rational(1, 2)], [a + 1, Rational(1, 2)], z)) == \
        -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do(
        [1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False)

    # test a bug
    assert hyperexpand(hyper([Rational(1, 2), Rational(1, 2), Rational(1, 2), 1],
                             [Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
        abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, Rational(1, 2)))
def test_hyperexpand_special():
    assert hyperexpand(hyper([a, b], [c], 1)) == \
        gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
    assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \
        gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b)
    assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \
        gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a)
    assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \
        gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \
        / gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2)
    assert hyperexpand(hyper([a], [b], 0)) == 1
    assert hyper([a], [b], 0) != 0
def test_erfc():
    assert erfc(nan) == nan

    assert erfc(oo) == 0
    assert erfc(-oo) == 2

    assert erfc(0) == 1

    assert erfc(I*oo) == -oo*I
    assert erfc(-I*oo) == oo*I

    assert erfc(-x) == Integer(2) - erfc(x)
    assert erfc(erfcinv(x)) == x
    assert erfc(erfinv(x)) == 1 - x

    assert erfc(I).is_extended_real is False
    assert erfc(w).is_extended_real is True
    assert erfc(z).is_extended_real is None

    assert conjugate(erfc(z)) == erfc(conjugate(z))

    assert erfc(x).as_leading_term(x) == 1
    assert erfc(1/x).as_leading_term(x) == erfc(1/x)

    assert erfc(z).rewrite('erf') == 1 - erf(z)
    assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
    assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                       I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
                                                       I*fresnels(z*(1 - I)/sqrt(pi)))
    assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], -z**2)/sqrt(pi)
    assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi)
    assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*erf(sqrt(z**2))/z
    assert erfc(z).rewrite('expint') == 1 - sqrt(z**2)/z + z*expint(Rational(1, 2), z**2)/sqrt(pi)

    assert erfc(x).as_real_imag() == \
        ((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfc(x).as_real_imag(deep=False) == erfc(x).as_real_imag()
    assert erfc(w).as_real_imag() == (erfc(w), 0)
    assert erfc(w).as_real_imag(deep=False) == erfc(w).as_real_imag()
    assert erfc(I).as_real_imag() == (1, -erfi(1))

    pytest.raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))

    assert erfc(x).taylor_term(3, x, *(-2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi)

    assert erfc(x).limit(x, oo) == 0

    assert erfc(x).diff(x) == -2*exp(-x**2)/sqrt(pi)
def test_erfi():
    assert erfi(nan) == nan

    assert erfi(+oo) == +oo
    assert erfi(-oo) == -oo

    assert erfi(0) == 0

    assert erfi(I*oo) == I
    assert erfi(-I*oo) == -I

    assert erfi(-x) == -erfi(x)

    assert erfi(I*erfinv(x)) == I*x
    assert erfi(I*erfcinv(x)) == I*(1 - x)
    assert erfi(I*erf2inv(0, x)) == I*x

    assert erfi(I).is_extended_real is False
    assert erfi(w).is_extended_real is True
    assert erfi(z).is_extended_real is None

    assert conjugate(erfi(z)) == erfi(conjugate(z))

    assert erfi(z).rewrite('erf') == -I*erf(I*z)
    assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
    assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
                                                   I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
                                                   I*fresnels(z*(1 + I)/sqrt(pi)))
    assert erfi(z).rewrite('hyper') == 2*z*hyper([Rational(1, 2)], [Rational(3, 2)], z**2)/sqrt(pi)
    assert erfi(z).rewrite('meijerg') == z*meijerg([Rational(1, 2)], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi)
    assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(Rational(1, 2),
                                                                       -z**2)/sqrt(pi) - 1))
    assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(Rational(1, 2), -z**2)/sqrt(pi)

    assert erfi(x).as_real_imag() == \
        ((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
          erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
          I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
             erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
          re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
    assert erfi(x).as_real_imag(deep=False) == erfi(x).as_real_imag()
    assert erfi(w).as_real_imag() == (erfi(w), 0)
    assert erfi(w).as_real_imag(deep=False) == erfi(w).as_real_imag()
    assert erfi(I).as_real_imag() == (0, erf(1))

    pytest.raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))

    assert erfi(x).taylor_term(3, x, *(2*x/sqrt(pi), 0)) == 2*x**3/3/sqrt(pi)

    assert erfi(x).limit(x, oo) == oo
Exemple #48
0
def test_meijerg_period():
    assert meijerg([], [1], [0], [], x).get_period() == 2*pi
    assert meijerg([1], [], [], [0], x).get_period() == 2*pi
    assert meijerg([], [], [0], [], x).get_period() == 2*pi  # exp(x)
    assert meijerg(
        [], [], [0], [Rational(1, 2)], x).get_period() == 2*pi  # cos(sqrt(x))
    assert meijerg(
        [], [], [Rational(1, 2)], [0], x).get_period() == 4*pi  # sin(sqrt(x))
    assert meijerg([1, 1], [], [1], [0], x).get_period() == oo  # log(1 + x)
Exemple #49
0
def test_rewrite_single():
    def t(expr, c, m):
        e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
        assert e is not None
        assert isinstance(e[0][0][2], meijerg)
        assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))

    def tn(expr):
        assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None

    t(x, 1, x)
    t(x**2, 1, x**2)
    t(x**2 + y*x**2, y + 1, x**2)
    tn(x**2 + x)
    tn(x**y)

    def u(expr, x):
        r = _rewrite_single(expr, x)
        e = Add(*[res[0]*res[2] for res in r[0]]).replace(
            exp_polar, exp)  # XXX Hack?
        assert verify_numerically(e, expr, x)

    u(exp(-x)*sin(x), x)

    # The following has stopped working because hyperexpand changed slightly.
    # It is probably not worth fixing
    # u(exp(-x)*sin(x)*cos(x), x)

    # This one cannot be done numerically, since it comes out as a g-function
    # of argument 4*pi
    # NOTE This also tests a bug in inverse mellin transform (which used to
    #      turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of
    #      exp_polar).
    # u(exp(x)*sin(x), x)
    assert _rewrite_single(exp(x)*sin(x), x) == \
        ([(-sqrt(2)/(2*sqrt(pi)), 0,
           meijerg(((-Rational(1, 2), 0, Rational(1, 4), Rational(1, 2), Rational(3, 4)), (1,)),
                   ((), (-Rational(1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True)
def test_meijerg_formulae():
    formulae = MeijerFormulaCollection().formulae
    for sig in formulae:
        for formula in formulae[sig]:
            g = meijerg(formula.func.an, formula.func.ap,
                        formula.func.bm, formula.func.bq,
                        formula.z)
            rep = {}
            for sym in formula.symbols:
                rep[sym] = randcplx()

            # first test if the closed-form is actually correct
            g = g.subs(rep)
            closed_form = formula.closed_form.subs(rep)
            z = formula.z
            assert tn(g, closed_form, z)

            # now test the computed matrix
            cl = (formula.C * formula.B)[0].subs(rep)
            assert tn(closed_form, cl, z)
            deriv1 = z*formula.B.diff(z)
            deriv2 = formula.M * formula.B
            for d1, d2 in zip(deriv1, deriv2):
                assert tn(d1.subs(rep), d2.subs(rep), z)
def test_li():
    z = Symbol("z")
    zr = Symbol("z", extended_real=True)
    zp = Symbol("z", positive=True)
    zn = Symbol("z", negative=True)

    assert li(0) == 0
    assert li(1) == -oo
    assert li(oo) == oo

    assert isinstance(li(z), li)

    assert diff(li(z), z) == 1/log(z)
    pytest.raises(ArgumentIndexError, lambda: li(z).fdiff(2))

    assert conjugate(li(z)) == li(conjugate(z))
    assert conjugate(li(-zr)) == li(-zr)
    assert conjugate(li(-zp)) == conjugate(li(-zp))
    assert conjugate(li(zn)) == conjugate(li(zn))

    assert li(z).rewrite(Li) == Li(z) + li(2)
    assert li(z).rewrite(Ei) == Ei(log(z))
    assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
                                         log(log(z))/2 - expint(1, -log(z)))
    assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
                                 log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
    assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
                                  Chi(log(z)) - Shi(log(z)))
    assert li(z).rewrite(hyper) == (log(z)*hyper((1, 1), (2, 2), log(z)) -
                                    log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
    assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
                                      meijerg(((), (1,)), ((0, 0), ()), -log(z)))
def test_meijerg_confluence():
    def t(m, a, b):
        a, b = sympify([a, b])
        m_ = m
        m = hyperexpand(m)
        if not m == Piecewise((a, abs(z) < 1), (b, abs(1/z) < 1), (m_, True)):
            return False
        if not (m.args[0].args[0] == a and m.args[1].args[0] == b):
            return False
        z0 = randcplx()/10
        if abs(m.subs({z: z0}) - a.subs({z: z0})).evalf(strict=False) > 1e-10:
            return False
        if abs(m.subs({z: 1/z0}) - b.subs({z: 1/z0})).evalf(strict=False) > 1e-10:
            return False
        return True

    assert t(meijerg([], [1, 1], [0, 0], [], z), -log(z), 0)
    assert t(meijerg(
        [], [3, 1], [0, 0], [], z), -z**2/4 + z - log(z)/2 - Rational(3, 4), 0)
    assert t(meijerg([], [3, 1], [-1, 0], [], z),
             z**2/12 - z/2 + log(z)/2 + Rational(1, 4) + 1/(6*z), 0)
    assert t(meijerg([], [1, 1, 1, 1], [0, 0, 0, 0], [], z), -log(z)**3/6, 0)
    assert t(meijerg([1, 1], [], [], [0, 0], z), 0, -log(1/z))
    assert t(meijerg([1, 1], [2, 2], [1, 1], [0, 0], z),
             -z*log(z) + 2*z, -log(1/z) + 2)
    assert t(meijerg([Rational(1, 2)], [1, 1], [0, 0], [Rational(3, 2)], z), log(z)/2 - 1, 0)

    def u(an, ap, bm, bq):
        m = meijerg(an, ap, bm, bq, z)
        m2 = hyperexpand(m, allow_hyper=True)
        if m2.has(meijerg) and not (m2.is_Piecewise and len(m2.args) == 3):
            return False
        return tn(m, m2, z)
    assert u([], [1], [0, 0], [])
    assert u([1, 1], [], [], [0])
    assert u([1, 1], [2, 2, 5], [1, 1, 6], [0, 0])
    assert u([1, 1], [2, 2, 5], [1, 1, 6], [0])
def test_meijerg():
    # carefully set up the parameters.
    # NOTE: this used to fail sometimes. I believe it is fixed, but if you
    #       hit an inexplicable test failure here, please let me know the seed.
    a1, a2 = (randcplx(n) - 5*I - n*I for n in range(2))
    b1, b2 = (randcplx(n) + 5*I + n*I for n in range(2))
    b3, b4, b5, a3, a4, a5 = (randcplx() for n in range(6))
    g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)

    assert ReduceOrder.meijer_minus(3, 4) is None
    assert ReduceOrder.meijer_plus(4, 3) is None

    g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2], z)
    assert tn(ReduceOrder.meijer_plus(a2, a2).apply(g, op), g2, z)

    g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2 + 1], z)
    assert tn(ReduceOrder.meijer_plus(a2, a2 + 1).apply(g, op), g2, z)

    g2 = meijerg([a1, a2 - 1], [a3, a4], [b1], [b3, b4, a2 + 2], z)
    assert tn(ReduceOrder.meijer_plus(a2 - 1, a2 + 2).apply(g, op), g2, z)

    g2 = meijerg([a1], [a3, a4, b2 - 1], [b1, b2 + 2], [b3, b4], z)
    assert tn(ReduceOrder.meijer_minus(
        b2 + 2, b2 - 1).apply(g, op), g2, z, tol=1e-6)

    # test several-step reduction
    an = [a1, a2]
    bq = [b3, b4, a2 + 1]
    ap = [a3, a4, b2 - 1]
    bm = [b1, b2 + 1]
    niq, ops = reduce_order_meijer(G_Function(an, ap, bm, bq))
    assert niq.an == (a1,)
    assert set(niq.ap) == {a3, a4}
    assert niq.bm == (b1,)
    assert set(niq.bq) == {b3, b4}
    assert tn(apply_operators(g, ops, op), meijerg(an, ap, bm, bq, z), z)
Exemple #54
0
def test_rewrite1():
    assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \
        (5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True)
Exemple #55
0
 def tn(expr):
     assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None
def test_meijerg_expand():
    # from mpmath docs
    assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)

    assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
        log(z + 1)
    assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
        z/(z + 1)
    assert hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (z/2)**2)) \
        == sin(z)/sqrt(pi)
    assert hyperexpand(meijerg([[], []], [[0], [Rational(1, 2)]], (z/2)**2)) \
        == cos(z)/sqrt(pi)
    assert can_do_meijer([], [a], [a - 1, a - Rational(1, 2)], [])
    assert can_do_meijer([], [], [a/2], [-a/2], False)  # branches...
    assert can_do_meijer([a], [b], [a], [b, a - 1])

    # wikipedia
    assert hyperexpand(meijerg([1], [], [], [0], z)) == \
        Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
                  (meijerg([1], [], [], [0], z), True))
    assert hyperexpand(meijerg([], [1], [0], [], z)) == \
        Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
                  (meijerg([], [1], [0], [], z), True))

    # The Special Functions and their Approximations
    assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + Rational(1, 2)])
    assert can_do_meijer(
        [], [], [a], [b], False)  # branches only agree for small z
    assert can_do_meijer([], [Rational(1, 2)], [a], [-a])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, a + Rational(1, 2)], [b, b + Rational(1, 2)])
    assert can_do_meijer([], [], [a, -a], [0, Rational(1, 2)], False)  # dito
    assert can_do_meijer([], [], [a, a + Rational(1, 2), b, b + Rational(1, 2)], [])
    assert can_do_meijer([Rational(1, 2)], [], [0], [a, -a])
    assert can_do_meijer([Rational(1, 2)], [], [a], [0, -a], False)  # dito
    assert can_do_meijer([], [a - Rational(1, 2)], [a, b], [a - Rational(1, 2)], False)
    assert can_do_meijer([], [a + Rational(1, 2)], [a + b, a - b, a], [], False)
    assert can_do_meijer([a + Rational(1, 2)], [], [b, 2*a - b, a], [], False)

    # This for example is actually zero.
    assert can_do_meijer([], [], [], [a, b])

    # Testing a bug:
    assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
        Piecewise((0, abs(z) < 1),
                  (z/2 - 1/(2*z), abs(1/z) < 1),
                  (meijerg([0, 2], [], [], [-1, 1], z), True))

    # Test that the simplest possible answer is returned:
    assert combsimp(simplify(hyperexpand(
        meijerg([1], [1 - a], [-a/2, -a/2 + Rational(1, 2)], [], 1/z)))) == \
        -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a

    # Test that hyper is returned
    assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
        (a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2

    assert can_do_meijer([], [], [a + Rational(1, 2)], [a, a - b/2, a + b/2])
    assert can_do_meijer([], [], [3*a - Rational(1, 2), a, -a - Rational(1, 2)], [a - Rational(1, 2)])
    assert can_do_meijer([], [], [0, a - Rational(1, 2), -a - Rational(1, 2)], [Rational(1, 2)])
    assert can_do_meijer([Rational(1, 2)], [], [-a, a], [0])
Exemple #57
0
 def t(expr, c, m):
     e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x)
     assert e is not None
     assert isinstance(e[0][0][2], meijerg)
     assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,))
 def u(an, ap, bm, bq):
     m = meijerg(an, ap, bm, bq, z)
     m2 = hyperexpand(m, allow_hyper=True)
     if m2.has(meijerg) and not (m2.is_Piecewise and len(m2.args) == 3):
         return False
     return tn(m, m2, z)
def test_Mod1_behavior():
    n = Symbol('n', integer=True)
    # Note: this should not hang.
    assert simplify(hyperexpand(meijerg([1], [], [n + 1], [0], z))) == \
        lowergamma(n + 1, z)
def test_sympyissue_6052():
    G0 = meijerg((), (), (1,), (0,), 0)
    assert hyperexpand(G0) == 0
    assert hyperexpand(hyper((), (2,), 0)) == 1