def test_sparse_solve(): A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) assert A.cholesky() == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) assert A.cholesky() * A.cholesky().T == Matrix([[25, 15, -5], [15, 18, 0], [-5, 0, 11]]) A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L, D = A.LDLdecomposition() assert 15 * L == Matrix([[15, 0, 0], [9, 15, 0], [-3, 5, 15]]) assert D == Matrix([[25, 0, 0], [0, 9, 0], [0, 0, 9]]) assert L * D * L.T == A A = SparseMatrix(((3, 0, 2), (0, 0, 1), (1, 2, 0))) assert A.inv() * A == SparseMatrix(eye(3)) A = SparseMatrix([[2, -1, 0], [-1, 2, -1], [0, 0, 2]]) ans = SparseMatrix([[Rational(2, 3), Rational(1, 3), Rational(1, 6)], [Rational(1, 3), Rational(2, 3), Rational(1, 3)], [0, 0, Rational(1, 2)]]) assert A.inv(method='CH') == ans assert A.inv(method='LDL') == ans assert A * ans == SparseMatrix(eye(3)) s = A.solve(A[:, 0], 'LDL') assert A * s == A[:, 0] s = A.solve(A[:, 0], 'CH') assert A * s == A[:, 0] A = A.col_join(A) s = A.solve_least_squares(A[:, 0], 'CH') assert A * s == A[:, 0] s = A.solve_least_squares(A[:, 0], 'LDL') assert A * s == A[:, 0] pytest.raises(ValueError, lambda: SparseMatrix([[1, 0, 1], [0, 0, 1]]).solve([1, 1])) pytest.raises( ValueError, lambda: SparseMatrix([[1, 0], [0, 0], [2, 1]]).solve([1, 1, 1]))
def test_sparse_matrix(): def sparse_eye(n): return SparseMatrix.eye(n) def sparse_zeros(n): return SparseMatrix.zeros(n) # creation args pytest.raises(TypeError, lambda: SparseMatrix(1, 2)) pytest.raises(ValueError, lambda: SparseMatrix(2, 2, (1, 3, 4, 5, 6))) a = SparseMatrix(((1, 0), (0, 1))) assert SparseMatrix(a) == a a = MutableSparseMatrix([]) b = MutableDenseMatrix([1, 2]) assert a.row_join(b) == b assert a.col_join(b) == b assert type(a.row_join(b)) == type(a) assert type(a.col_join(b)) == type(a) # test element assignment a = SparseMatrix(((1, 0), (0, 1))) a[3] = 4 assert a[1, 1] == 4 a[3] = 1 a[0, 0] = 2 assert a == SparseMatrix(((2, 0), (0, 1))) a[1, 0] = 5 assert a == SparseMatrix(((2, 0), (5, 1))) a[1, 1] = 0 assert a == SparseMatrix(((2, 0), (5, 0))) assert a._smat == {(0, 0): 2, (1, 0): 5} # test_multiplication a = SparseMatrix(( (1, 2), (3, 1), (0, 6), )) b = SparseMatrix(( (1, 2), (3, 0), )) c = a * b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 c = b * x assert isinstance(c, SparseMatrix) assert c[0, 0] == x assert c[0, 1] == 2 * x assert c[1, 0] == 3 * x assert c[1, 1] == 0 c = 5 * b assert isinstance(c, SparseMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2 * 5 assert c[1, 0] == 3 * 5 assert c[1, 1] == 0 # test_power A = SparseMatrix([[2, 3], [4, 5]]) assert (A**5)[:] == [6140, 8097, 10796, 14237] A = SparseMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] # test_creation a = SparseMatrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = SparseMatrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b S = sparse_eye(3) del S[1, :] assert S == SparseMatrix([[1, 0, 0], [0, 0, 1]]) S = sparse_eye(3) del S[:, 1] assert S == SparseMatrix([[1, 0], [0, 0], [0, 1]]) S = SparseMatrix.eye(3) S[2, 1] = 2 S.col_swap(1, 0) assert S == SparseMatrix([[0, 1, 0], [1, 0, 0], [2, 0, 1]]) S.row_swap(0, 1) assert S == SparseMatrix([[1, 0, 0], [0, 1, 0], [2, 0, 1]]) S.col_swap(0, 1) assert S == SparseMatrix([[0, 1, 0], [1, 0, 0], [0, 2, 1]]) S.row_swap(0, 2) assert S == SparseMatrix([[0, 2, 1], [1, 0, 0], [0, 1, 0]]) S.col_swap(0, 2) assert S == SparseMatrix([[1, 2, 0], [0, 0, 1], [0, 1, 0]]) a = SparseMatrix(1, 2, [1, 2]) b = a.copy() c = a.copy() assert a[0] == 1 del a[0, :] assert a == SparseMatrix(0, 2, []) del b[:, 1] assert b == SparseMatrix(1, 1, [1]) # test_determinant assert SparseMatrix(1, 1, [0]).det() == 0 assert SparseMatrix([[1]]).det() == 1 assert SparseMatrix(((-3, 2), (8, -5))).det() == -1 assert SparseMatrix(((x, 1), (y, 2 * y))).det() == 2 * x * y - y assert SparseMatrix(((1, 1, 1), (1, 2, 3), (1, 3, 6))).det() == 1 assert SparseMatrix(((3, -2, 0, 5), (-2, 1, -2, 2), (0, -2, 5, 0), (5, 0, 3, 4))).det() == -289 assert SparseMatrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))).det() == 0 assert SparseMatrix(((3, 2, 0, 0, 0), (0, 3, 2, 0, 0), (0, 0, 3, 2, 0), (0, 0, 0, 3, 2), (2, 0, 0, 0, 3))).det() == 275 assert SparseMatrix(((1, 0, 1, 2, 12), (2, 0, 1, 1, 4), (2, 1, 1, -1, 3), (3, 2, -1, 1, 8), (1, 1, 1, 0, 6))).det() == -55 assert SparseMatrix(((-5, 2, 3, 4, 5), (1, -4, 3, 4, 5), (1, 2, -3, 4, 5), (1, 2, 3, -2, 5), (1, 2, 3, 4, -1))).det() == 11664 assert SparseMatrix(((2, 7, -1, 3, 2), (0, 0, 1, 0, 1), (-2, 0, 7, 0, 2), (-3, -2, 4, 5, 3), (1, 0, 0, 0, 1))).det() == 123 # test_slicing m0 = sparse_eye(4) assert m0[:3, :3] == sparse_eye(3) assert m0[2:4, 0:2] == sparse_zeros(2) m1 = SparseMatrix(3, 3, lambda i, j: i + j) assert m1[0, :] == SparseMatrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == SparseMatrix(2, 1, (2, 3)) m2 = SparseMatrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == SparseMatrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == SparseMatrix([[8, 9, 10, 11], [12, 13, 14, 15]]) assert SparseMatrix([[1, 2], [3, 4]])[[1], [1]] == Matrix([[4]]) # test_submatrix_assignment m = sparse_zeros(4) m[2:4, 2:4] = sparse_eye(2) assert m == SparseMatrix([(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]) assert len(m._smat) == 2 m[:2, :2] = sparse_eye(2) assert m == sparse_eye(4) m[:, 0] = SparseMatrix(4, 1, (1, 2, 3, 4)) assert m == SparseMatrix([(1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1)]) m[:, :] = sparse_zeros(4) assert m == sparse_zeros(4) m[:, :] = ((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)) assert m == SparseMatrix( ((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == SparseMatrix( ((0, 2, 3, 4), (0, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) # test_reshape m0 = sparse_eye(3) assert m0.reshape(1, 9) == SparseMatrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = SparseMatrix(3, 4, lambda i, j: i + j) assert m1.reshape(4, 3) == \ SparseMatrix([(0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5)]) assert m1.reshape(2, 6) == \ SparseMatrix([(0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5)]) # test_applyfunc m0 = sparse_eye(3) assert m0.applyfunc(lambda x: 2 * x) == sparse_eye(3) * 2 assert m0.applyfunc(lambda x: 0) == sparse_zeros(3) # test_LUdecomp testmat = SparseMatrix([[0, 2, 5, 3], [3, 3, 7, 4], [8, 4, 0, 2], [-2, 6, 3, 4]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L * U).permuteBkwd(p) - testmat == sparse_zeros(4) testmat = SparseMatrix([[6, -2, 7, 4], [0, 3, 6, 7], [1, -2, 7, 4], [-9, 2, 6, 3]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L * U).permuteBkwd(p) - testmat == sparse_zeros(4) M = Matrix(((1, x, 1), (2, y, 0), (y, 0, z))) L, U, p = M.LUdecomposition() assert L.is_lower assert U.is_upper assert (L * U).permuteBkwd(p) - M == sparse_zeros(3) # test_LUsolve A = SparseMatrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) B = SparseMatrix(3, 1, [3, 7, 5]) b = A * B soln = A.LUsolve(b) assert soln == B A = SparseMatrix([[0, -1, 2], [5, 10, 7], [8, 3, 4]]) B = SparseMatrix(3, 1, [-1, 2, 5]) b = A * B soln = A.LUsolve(b) assert soln == B # test_inverse A = sparse_eye(4) assert A.inv() == sparse_eye(4) assert A.inv(method='CH') == sparse_eye(4) assert A.inv(method='LDL') == sparse_eye(4) A = SparseMatrix([[2, 3, 5], [3, 6, 2], [7, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A * Ainv == sparse_eye(3) assert A.inv(method='CH') == Ainv assert A.inv(method='LDL') == Ainv A = SparseMatrix([[2, 3, 5], [3, 6, 2], [5, 2, 6]]) Ainv = SparseMatrix(Matrix(A).inv()) assert A * Ainv == sparse_eye(3) assert A.inv(method='CH') == Ainv assert A.inv(method='LDL') == Ainv # test_cross v1 = Matrix(1, 3, [1, 2, 3]) v2 = Matrix(1, 3, [3, 4, 5]) assert v1.cross(v2) == Matrix(1, 3, [-2, 4, -2]) assert v1.norm(2)**2 == 14 # conjugate a = SparseMatrix(((1, 2 + I), (3, 4))) assert a.C == SparseMatrix([[1, 2 - I], [3, 4]]) # mul assert a * Matrix(2, 2, [1, 0, 0, 1]) == a assert a + Matrix(2, 2, [1, 1, 1, 1]) == SparseMatrix([[2, 3 + I], [4, 5]]) assert a * 0 == Matrix([[0, 0], [0, 0]]) # col join assert a.col_join(sparse_eye(2)) == SparseMatrix([[1, 2 + I], [3, 4], [1, 0], [0, 1]]) A = SparseMatrix(ones(3)) B = eye(3) assert A.col_join(B) == Matrix([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) # row join A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) B = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert A.row_join(B) == Matrix([[1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) # symmetric assert not a.is_symmetric(simplify=False) assert sparse_eye(3).is_symmetric(simplify=False) # test_cofactor assert sparse_eye(3) == sparse_eye(3).cofactorMatrix() test = SparseMatrix([[1, 3, 2], [2, 6, 3], [2, 3, 6]]) assert test.cofactorMatrix() == \ SparseMatrix([[27, -6, -6], [-12, 2, 3], [-3, 1, 0]]) test = SparseMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert test.cofactorMatrix() == \ SparseMatrix([[-3, 6, -3], [6, -12, 6], [-3, 6, -3]]) # test_jacobian L = SparseMatrix(1, 2, [x**2 * y, 2 * y**2 + x * y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2 * x * y, x**2], [y, 4 * y + x]]) L = SparseMatrix(1, 2, [x, x**2 * y**3]) assert L.jacobian(syms) == SparseMatrix([[1, 0], [2 * x * y**3, x**2 * 3 * y**2]]) # test_QR A = Matrix([[1, 2], [2, 3]]) Q, S = A.QRdecomposition() R = Rational assert Q == Matrix([[5**R(-1, 2), (R(2) / 5) * (R(1) / 5)**R(-1, 2)], [2 * 5**R(-1, 2), (-R(1) / 5) * (R(1) / 5)**R(-1, 2)]]) assert S == Matrix([[5**R(1, 2), 8 * 5**R(-1, 2)], [0, (R(1) / 5)**R(1, 2)]]) assert Q * S == A assert Q.T * Q == sparse_eye(2) R = Rational # test nullspace # first test reduced row-ech form M = SparseMatrix([[5, 7, 2, 1], [1, 6, 2, -1]]) out, tmp = M.rref() assert out == Matrix([[1, 0, -R(2) / 23, R(13) / 23], [0, 1, R(8) / 23, R(-6) / 23]]) M = SparseMatrix([[1, 3, 0, 2, 6, 3, 1], [-2, -6, 0, -2, -8, 3, 1], [3, 9, 0, 0, 6, 6, 2], [-1, -3, 0, 1, 0, 9, 3]]) out, tmp = M.rref() assert out == Matrix([[1, 3, 0, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 1, R(1) / 3], [0, 0, 0, 0, 0, 0, 0]]) # now check the vectors basis = M.nullspace() assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0]) assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0]) assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0]) assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1) / 3, 1]) # test eigen sparse_eye3 = sparse_eye(3) assert sparse_eye3.charpoly(x) == PurePoly(((x - 1)**3)) assert sparse_eye3.charpoly(y) == PurePoly(((y - 1)**3)) # test values M = Matrix([(0, 1, -1), (1, 1, 0), (-1, 0, 1)]) vals = M.eigenvals() assert sorted(vals) == [-1, 1, 2] R = Rational M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.eigenvects() == [ (1, 3, [Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])]) ] M = Matrix([[5, 0, 2], [3, 2, 0], [0, 0, 1]]) assert M.eigenvects() == [(1, 1, [Matrix([R(-1) / 2, R(3) / 2, 1])]), (2, 1, [Matrix([0, 1, 0])]), (5, 1, [Matrix([1, 1, 0])])] assert M.zeros(3, 5) == SparseMatrix(3, 5, {}) A = SparseMatrix( 10, 10, { (0, 0): 18, (0, 9): 12, (1, 4): 18, (2, 7): 16, (3, 9): 12, (4, 2): 19, (5, 7): 16, (6, 2): 12, (9, 7): 18 }) assert A.row_list() == [(0, 0, 18), (0, 9, 12), (1, 4, 18), (2, 7, 16), (3, 9, 12), (4, 2, 19), (5, 7, 16), (6, 2, 12), (9, 7, 18)] assert A.col_list() == [(0, 0, 18), (4, 2, 19), (6, 2, 12), (1, 4, 18), (2, 7, 16), (5, 7, 16), (9, 7, 18), (0, 9, 12), (3, 9, 12)] assert SparseMatrix.eye(2).nnz() == 2 M = SparseMatrix.eye(3) * 2 M[1, 0] = -1 M.col_op(1, lambda v, i: v + 2 * M[i, 0]) assert M == Matrix([[2, 4, 0], [-1, 0, 0], [0, 0, 2]]) M = SparseMatrix.zeros(3) M.fill(1) assert M == ones(3) assert SparseMatrix(ones(0, 3)).tolist() == []