Exemple #1
0
    def addChromosome(self, chr, tax_id, tax_label=None, build_id=None, build_label=None):
        # if it's just the chromosome, add it as an instance of a SO:chromosome, and add it to the genome.
        # if a build is included, punn the chromosome as a subclass of SO:chromsome, and
        # make the build-specific chromosome an instance of the supplied chr.  The chr then becomes part of the
        # build or genome.

        # first, make the chromosome class, at the taxon level
        chr_id = makeChromID(str(chr), tax_id)
        if tax_label is not None:
            chr_label = makeChromLabel(chr, tax_label)
        else:
            chr_label = makeChromLabel(chr)
        genome_id = self.makeGenomeID(tax_id)
        self.gu.addClassToGraph(self.graph, chr_id, chr_label, Feature.types['chromosome'])
        self.addTaxon(tax_id, genome_id)  # add the taxon to the genome

        if build_id is not None:
            chrinbuild_id = makeChromID(chr, build_id)  # the build-specific chromosome
            if build_label is None:
                build_label = build_id
            chrinbuild_label = makeChromLabel(chr, build_label)
            # add the build-specific chromosome as an instance of the chr class
            self.gu.addIndividualToGraph(self.graph, chrinbuild_id, chrinbuild_label, chr_id)

            # add the build-specific chromosome as a member of the build  (both ways)
            self.gu.addMember(self.graph, build_id, chrinbuild_id)
            self.gu.addMemberOf(self.graph, chrinbuild_id, build_id)

        return
Exemple #2
0
    def addChromosomeInstance(
            self, chr_num, reference_id, reference_label, chr_type=None):
        """
        Add the supplied chromosome as an instance within the given reference
        :param chr_num:
        :param reference_id: for example, a build id like UCSC:hg19
        :param reference_label:
        :param chr_type: this is the class that this is an instance of.
        typically a genome-specific chr

        :return:

        """
        family = Family(self.graph)
        chr_id = makeChromID(str(chr_num), reference_id, 'MONARCH')
        chr_label = makeChromLabel(str(chr_num), reference_label)

        self.model.addIndividualToGraph(
            chr_id, chr_label, Feature.types['chromosome'])
        if chr_type is not None:
            self.model.addType(chr_id, chr_type)

        # add the build-specific chromosome
        # as a member of the build  (both ways)
        family.addMember(reference_id, chr_id)
        family.addMemberOf(chr_id, reference_id)

        return
Exemple #3
0
 def addChromosomeClass(self, chrom_num, taxon_id, taxon_label):
     taxon = re.sub('NCBITaxon:', '', taxon_id)
     # the chrom class (generic) id
     chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')
     chrom_class_label = makeChromLabel(chrom_num, taxon_label)
     self.model.addClassToGraph(chrom_class_id, chrom_class_label,
                                self.globaltt['chromosome'])
Exemple #4
0
    def addChromosomeInstance(self,
                              chr_num,
                              reference_id,
                              reference_label,
                              chr_type=None):
        """
        Add the supplied chromosome as an instance within the given reference
        :param chr_num:
        :param reference_id: for example, a build id like UCSC:hg19
        :param reference_label:
        :param chr_type: this is the class that this is an instance of.
        typically a genome-specific chr

        :return:

        """
        family = Family(self.graph)
        chr_id = makeChromID(str(chr_num), reference_id, 'MONARCH')
        chr_label = makeChromLabel(str(chr_num), reference_label)

        self.model.addIndividualToGraph(chr_id, chr_label,
                                        self.globaltt['chromosome'])
        if chr_type is not None:
            self.model.addType(chr_id, chr_type)

        # add the build-specific chromosome
        # as a member of the build  (both ways)
        family.addMember(reference_id, chr_id)
        family.addMemberOf(chr_id,
                           reference_id)  # usage dependent, todo: ommit

        return
Exemple #5
0
    def addChromosomeClass(self, chrom_num, taxon_id, taxon_label):
        taxon = re.sub('NCBITaxon:', '', taxon_id)
        chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')  # the chrom class (generic) id
        chrom_class_label = makeChromLabel(chrom_num, taxon_label)
        self.gu.addClassToGraph(self.graph, chrom_class_id, chrom_class_label,
                                Feature.types['chromosome'])

        return
Exemple #6
0
    def addChromosome(self,
                      chrom,
                      tax_id,
                      tax_label=None,
                      build_id=None,
                      build_label=None):
        """
        if it's just the chromosome, add it as an instance of a SO:chromosome,
        and add it to the genome. If a build is included,
        punn the chromosome as a subclass of SO:chromsome, and make the
        build-specific chromosome an instance of the supplied chr.
        The chr then becomes part of the build or genome.
        """
        family = Family(self.graph)
        # first, make the chromosome class, at the taxon level
        chr_id = makeChromID(str(chrom), tax_id)
        if tax_label is not None:
            chr_label = makeChromLabel(chrom, tax_label)
        else:
            chr_label = makeChromLabel(chrom)
        genome_id = self.makeGenomeID(tax_id)
        self.model.addClassToGraph(chr_id, chr_label,
                                   self.globaltt['chromosome'])
        self.addTaxon(tax_id, genome_id)  # add the taxon to the genome

        if build_id is not None:
            # the build-specific chromosome
            chrinbuild_id = makeChromID(chrom, build_id)
            if build_label is None:
                build_label = build_id
            chrinbuild_label = makeChromLabel(chrom, build_label)
            # add the build-specific chromosome as an instance of the chr class

            self.model.addIndividualToGraph(chrinbuild_id, chrinbuild_label,
                                            chr_id)

            # add the build-specific chromosome
            # as a member of the build (both ways)
            family.addMember(build_id,
                             chrinbuild_id,
                             group_category=blv.terms['GenomeBuild'])
            family.addMemberOf(chrinbuild_id,
                               build_id,
                               group_category=blv.terms['GenomeBuild'])
Exemple #7
0
    def _get_chrbands(self, limit, taxon):
        """
        For the given taxon, it will fetch the chr band file.
        We will not deal with the coordinate information with this parser.
        Here, we only are concerned with building the partonomy.
        :param limit:
        :return:

        """
        model = Model(self.graph)
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        LOG.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)

        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:' + taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        genome_id = geno.makeGenomeID(taxon_id)
        geno.addGenome(taxon_id, genome_label)
        model.addOWLPropertyClassRestriction(
            genome_id, self.globaltt['in taxon'], taxon_id)

        placed_scaffold_pattern = r'chr(\d+|X|Y|Z|W|MT|M)'
        # currently unused patterns
        # unlocalized_scaffold_pattern = placed_scaffold_pattern + r'_(\w+)_random'
        # unplaced_scaffold_pattern = r'chrUn_(\w+)'

        col = ['chrom', 'start', 'stop', 'band', 'rtype']
        with gzip.open(myfile, 'rb') as reader:
            for line in reader:
                line_counter += 1
                # skip comments
                line = line.decode().strip()
                if line[0] == '#':
                    continue
                # chr13	4500000	10000000	p12	stalk
                row = line.split('\t')
                chrom = row[col.index('chrom')]
                band = row[col.index('band')]
                rtype = row[col.index('rtype')]
                # NOTE
                # some less-finished genomes have placed and unplaced scaffolds
                # * Placed scaffolds:
                #    Scaffold has an oriented location within a chromosome.
                # * Unlocalized scaffolds:
                #     scaffold 's chromosome  is known,
                #     scaffold's position, orientation or both is not known.
                # *Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to.
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1

                mch = re.match(placed_scaffold_pattern+r'$', chrom)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    # chrom = m.group(1)  # TODO unused
                    pass
                else:
                    # let's skip over anything that isn't a placed_scaffold
                    LOG.info("Skipping non-placed chromosome %s", chrom)
                    continue
                # the chrom class, taxon as the reference
                cclassid = makeChromID(chrom, taxon, 'CHR')

                # add the chromosome as a class
                geno.addChromosomeClass(chrom, taxon_id, genome_label)
                model.addOWLPropertyClassRestriction(
                    cclassid, self.globaltt['member of'], genome_id)

                # add the band(region) as a class
                maplocclass_id = cclassid+band
                maplocclass_label = makeChromLabel(chrom+band, genome_label)
                if band is not None and band.strip() != '':
                    region_type_id = self.map_type_of_region(rtype)
                    model.addClassToGraph(
                        maplocclass_id, maplocclass_label,
                        region_type_id)
                else:
                    region_type_id = self.globaltt['chromosome']
                # add the staining intensity of the band
                if re.match(r'g(neg|pos|var)', rtype):
                    if region_type_id in [
                            self.globaltt['chromosome_band'],
                            self.globaltt['chromosome_subband']]:
                        stain_type = self.resolve(rtype)
                        if stain_type is not None:
                            model.addOWLPropertyClassRestriction(
                                maplocclass_id,
                                self.globaltt['has_sequence_attribute'],
                                self.resolve(rtype))
                    else:
                        # usually happens if it's a chromosome because
                        # they don't actually have banding info
                        LOG.info("feature type %s != chr band", region_type_id)
                else:
                    LOG.warning('staining type not found: %s', rtype)

                # get the parent bands, and make them unique
                parents = list(self.make_parent_bands(band, set()))
                # alphabetical sort will put them in smallest to biggest
                parents.sort(reverse=True)

                # print("PARENTS of", maplocclass_id, "=", parents)
                # add the parents to the graph, in hierarchical order
                # TODO this is somewhat inefficient due to
                # re-adding upper-level nodes when iterating over the file
                for prnt in parents:
                    parent = prnt.strip()
                    if parent is None or parent == "":
                        continue
                    pclassid = cclassid + parent  # class chr parts
                    pclass_label = makeChromLabel(chrom + parent, genome_label)
                    rti = getChrPartTypeByNotation(parent, self.graph)
                    model.addClassToGraph(pclassid, pclass_label, rti)

                    # for canonical chromosomes,
                    # then the subbands are subsequences of the full band
                    # add the subsequence stuff as restrictions

                    if prnt != parents[-1]:
                        grandparent = 1 + parents.index(prnt)
                        pid = cclassid + parents[grandparent]   # the instance
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'], pid)
                        model.addOWLPropertyClassRestriction(
                            pid, self.globaltt['has subsequence'], pclassid)
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'], cclassid)
                        model.addOWLPropertyClassRestriction(
                            cclassid, self.globaltt['has subsequence'], pclassid)

                # connect the band here to the first one in the parent list
                if len(parents) > 0:
                    model.addOWLPropertyClassRestriction(
                        maplocclass_id, self.globaltt['is subsequence of'],
                        cclassid + parents[0])
                    model.addOWLPropertyClassRestriction(
                        cclassid + parents[0], self.globaltt['has subsequence'],
                        maplocclass_id)

                if limit is not None and line_counter > limit:
                    break

        # TODO figure out the staining intensities for the encompassing bands

        return
Exemple #8
0
    def _get_gene_info(self, limit):
        """
        Currently loops through the gene_info file and
        creates the genes as classes, typed with SO.  It will add their label,
        any alternate labels as synonyms, alternate ids as equivlaent classes.
        HPRDs get added as protein products.
        The chromosome and chr band get added as blank node regions,
        and the gene is faldo:located
        on the chr band.
        :param limit:
        :return:

        """
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)
        model = Model(g)

        # not unzipping the file
        logger.info("Processing 'Gene Info' records")
        line_counter = 0
        gene_info = '/'.join((self.rawdir, self.files['gene_info']['file']))
        logger.info("FILE: %s", gene_info)
        # Add taxa and genome classes for those in our filter
        for tax_num in self.tax_ids:
            tax_id = ':'.join(('NCBITaxon', str(tax_num)))
            # tax label can get added elsewhere
            geno.addGenome(tax_id, str(tax_num))
            # label added elsewhere
            model.addClassToGraph(tax_id, None)
        with gzip.open(gene_info, 'rb') as f:
            row = f.readline().decode().strip().split('\t')
            logger.info("Header has %i columns", len(row))
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match(r'^#', line):
                    continue
                (tax_num, gene_num, symbol, locustag, synonyms, xrefs, chrom,
                 map_loc, desc, gtype, authority_symbol, name,
                 nomenclature_status, other_designations, modification_date,
                 feature_type) = line.split('\t')

                # ##set filter=None in init if you don't want to have a filter
                # if self.filter is not None:
                #     if ((self.filter == 'taxids' and \
                #          (int(tax_num) not in self.tax_ids))
                #           or (self.filter == 'geneids' and \
                #               (int(gene_num) not in self.gene_ids))):
                #         continue
                # #### end filter

                if self.testMode and int(gene_num) not in self.gene_ids:
                    continue

                if not self.testMode and int(tax_num) not in self.tax_ids:
                    continue

                line_counter += 1

                gene_id = ':'.join(('NCBIGene', gene_num))
                tax_id = ':'.join(('NCBITaxon', tax_num))
                gene_type_id = self.map_type_of_gene(gtype.strip())

                if symbol == 'NEWENTRY':
                    label = None
                else:
                    label = symbol
                # sequence feature, not a gene
                if gene_type_id == 'SO:0000110':
                    self.class_or_indiv[gene_id] = 'I'
                else:
                    self.class_or_indiv[gene_id] = 'C'

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    continue

                if self.class_or_indiv[gene_id] == 'C':
                    model.addClassToGraph(gene_id, label, gene_type_id, desc)
                    # NCBI will be the default leader,
                    # so we will not add the leader designation here.
                else:
                    model.addIndividualToGraph(gene_id, label, gene_type_id,
                                               desc)
                    # in this case, they aren't genes.
                    # so we want someone else to be the leader.

                if name != '-':
                    model.addSynonym(gene_id, name)
                if synonyms.strip() != '-':
                    for s in synonyms.split('|'):
                        model.addSynonym(
                            gene_id, s.strip(),
                            Assoc.annotation_properties['hasRelatedSynonym'])
                if other_designations.strip() != '-':
                    for s in other_designations.split('|'):
                        model.addSynonym(
                            gene_id, s.strip(),
                            Assoc.annotation_properties['hasRelatedSynonym'])
                if xrefs.strip() != '-':
                    self._add_gene_equivalencies(xrefs, gene_id, tax_num)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # no idea why there's two bands listed - possibly 2 assemblies
                # 419     ART3      4    with   4q21.1|4p15.1-p14
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # this is of "unknown" type == susceptibility
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3
                # unlocated scaffold
                # 101928066       LOC101928066    1|Un    -\
                # mouse --> 2C3
                # 11435   Chrna1  2       2 C3|2 43.76 cM
                # mouse --> 11B1.1
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table
                # when there is > 1 listed
                # with the exception of human X|Y,
                # we will only take those that align to one chr

                # FIXME remove the chr mapping below
                # when we pull in the genomic coords
                if str(chrom) != '-' and str(chrom) != '':
                    if re.search(r'\|', str(chrom)) and \
                            str(chrom) not in ['X|Y', 'X; Y']:
                        # means that there's uncertainty in the mapping.
                        # so skip it
                        # TODO we'll need to figure out how to deal with
                        # >1 loc mapping
                        logger.info(
                            '%s is non-uniquely mapped to %s.' +
                            ' Skipping for now.', gene_id, str(chr))
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if(not re.match(
                    #        r'(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if str(chrom) == 'X; Y':
                        chrom = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for c in re.split(r'\|', str(chrom)):
                        # assume that the chromosome label is added elsewhere
                        geno.addChromosomeClass(c, tax_id, None)
                        mychrom = makeChromID(c, tax_num, 'CHR')
                        # temporarily use taxnum for the disambiguating label
                        mychrom_syn = makeChromLabel(c, tax_num)
                        model.addSynonym(mychrom, mychrom_syn)
                        band_match = re.match(r'[0-9A-Z]+[pq](\d+)?(\.\d+)?$',
                                              map_loc)
                        if band_match is not None and \
                                len(band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs,
                            # so make that kind of band
                            # not sure why this matches?
                            #   chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex
                            # per organism
                            # the maploc_id already has the numeric chromosome
                            # in it, strip it first
                            bid = re.sub(r'^' + c, '', map_loc)
                            # the generic location (no coordinates)
                            maploc_id = makeChromID(c + bid, tax_num, 'CHR')
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            # Assume it's type will be added elsewhere
                            band = Feature(g, maploc_id, None, None)
                            band.addFeatureToGraph()
                            # add the band as the containing feature
                            g.addTriple(
                                gene_id,
                                Feature.object_properties['is_subsequence_of'],
                                maploc_id)
                        else:
                            # TODO handle these cases: examples are:
                            # 15q11-q22,Xp21.2-p11.23,15q22-qter,10q11.1-q24,
                            # 12p13.3-p13.2|12p13-p12,1p13.3|1p21.3-p13.1,
                            # 12cen-q21,22q13.3|22q13.3
                            logger.debug('not regular band pattern for %s: %s',
                                         gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            g.addTriple(
                                gene_id,
                                Feature.object_properties['is_subsequence_of'],
                                mychrom)

                geno.addTaxon(tax_id, gene_id)

        return
Exemple #9
0
    def _get_gene_info(self, limit):
        """
        Currently loops through the gene_info file and creates the genes as classes, typed with SO.  It will add their
        label, any alternate labels as synonyms, alternate ids as equivlaent classes.  HPRDs get added as
        protein products.  The chromosome and chr band get added as blank node regions, and the gene is faldo:located
        on the chr band.
        :param limit:
        :return:
        """
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)

        # not unzipping the file
        logger.info("Processing Gene records")
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files['gene_info']['file']))
        logger.info("FILE: %s", myfile)

        # Add taxa and genome classes for those in our filter
        for tax_num in self.tax_ids:
            tax_id = ':'.join(('NCBITaxon', str(tax_num)))
            geno.addGenome(tax_id, str(tax_num))   # tax label can get added elsewhere
            gu.addClassToGraph(g, tax_id, None)   # label added elsewhere
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue
                (tax_num, gene_num, symbol, locustag,
                 synonyms, xrefs, chr, map_loc, desc,
                 gtype, authority_symbol, name,
                 nomenclature_status, other_designations, modification_date) = line.split('\t')

                ##### set filter=None in init if you don't want to have a filter
                #if self.filter is not None:
                #    if ((self.filter == 'taxids' and (int(tax_num) not in self.tax_ids))
                #            or (self.filter == 'geneids' and (int(gene_num) not in self.gene_ids))):
                #        continue
                ##### end filter

                if self.testMode and int(gene_num) not in self.gene_ids:
                    continue

                if int(tax_num) not in self.tax_ids:
                    continue

                line_counter += 1

                gene_id = ':'.join(('NCBIGene', gene_num))
                tax_id = ':'.join(('NCBITaxon', tax_num))
                gene_type_id = self._map_type_of_gene(gtype)

                if symbol == 'NEWENTRY':
                    label = None
                else:
                    label = symbol

                # TODO might have to figure out if things aren't genes, and make them individuals
                gu.addClassToGraph(g, gene_id, label, gene_type_id, desc)

                # we have to do special things here for genes, because they're classes not individuals
                # f = Feature(gene_id,label,gene_type_id,desc)

                if name != '-':
                    gu.addSynonym(g, gene_id, name)
                if synonyms.strip() != '-':
                    for s in synonyms.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])
                if other_designations.strip() != '-':
                    for s in other_designations.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])

                # deal with the xrefs
                # MIM:614444|HGNC:HGNC:16851|Ensembl:ENSG00000136828|HPRD:11479|Vega:OTTHUMG00000020696
                if xrefs.strip() != '-':
                    for r in xrefs.strip().split('|'):
                        fixedr = self._cleanup_id(r)
                        if fixedr is not None and fixedr.strip() != '':
                            if re.match('HPRD', fixedr):
                                # proteins are not == genes.
                                gu.addTriple(g, gene_id, self.properties['has_gene_product'], fixedr)
                            else:
                                # skip some of these for now
                                if fixedr.split(':')[0] not in ['Vega', 'IMGT/GENE-DB']:
                                    gu.addEquivalentClass(g, gene_id, fixedr)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # 419     ART3      4    with   4q21.1|4p15.1-p14   # no idea why there's two bands listed - possibly 2 assemblies
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3   #this is of "unknown" type == susceptibility
                # 101928066       LOC101928066    1|Un    -         # unlocated scaffold
                # 11435   Chrna1  2       2 C3|2 43.76 cM           # mouse --> 2C3
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM       # mouse --> 11B1.1
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table when there is > 1 listed
                # with the exception of human X|Y, i will only take those that align to one chr

                # FIXME remove the chr mapping below when we pull in the genomic coords
                if str(chr) != '-' and str(chr) != '':
                    if re.search('\|', str(chr)) and str(chr) not in ['X|Y','X; Y']:
                        # this means that there's uncertainty in the mapping.  skip it
                        # TODO we'll need to figure out how to deal with >1 loc mapping
                        logger.info('%s is non-uniquely mapped to %s.  Skipping for now.', gene_id, str(chr))
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if (not re.match('(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if str(chr) == 'X; Y':
                        chr = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for c in re.split('\|',str(chr)) :
                        geno.addChromosomeClass(c, tax_id, None)  # assume that the chromosome label will get added elsewhere
                        mychrom = makeChromID(c, tax_num, 'CHR')
                        mychrom_syn = makeChromLabel(c, tax_num)  # temporarily use the taxnum for the disambiguating label
                        gu.addSynonym(g, mychrom,  mychrom_syn)
                        band_match = re.match('[0-9A-Z]+[pq](\d+)?(\.\d+)?$', map_loc)
                        if band_match is not None and len(band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs, so make that kind of band
                            # not sure why this matches? chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex per organism
                            # the maploc_id already has the numeric chromosome in it, strip it first
                            bid = re.sub('^'+c, '', map_loc)
                            maploc_id = makeChromID(c+bid, tax_num, 'CHR')  # the generic location (no coordinates)
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            band = Feature(maploc_id, None, None)  # Assume it's type will be added elsewhere
                            band.addFeatureToGraph(g)
                            # add the band as the containing feature
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], maploc_id)
                        else:
                            # TODO handle these cases
                            # examples are: 15q11-q22, Xp21.2-p11.23, 15q22-qter, 10q11.1-q24,
                            ## 12p13.3-p13.2|12p13-p12, 1p13.3|1p21.3-p13.1,  12cen-q21, 22q13.3|22q13.3
                            logger.debug('not regular band pattern for %s: %s', gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], mychrom)

                geno.addTaxon(tax_id, gene_id)

                if not self.testMode and limit is not None and line_counter > limit:
                    break

            gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
            gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
            gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
            gu.loadAllProperties(g)

        return
Exemple #10
0
    def _get_chrbands(self, limit, src_key, genome_id):
        """
        :param limit:
        :return:

        """
        tax_num = src_key
        if limit is None:
            limit = sys.maxsize  # practical limit anyway
        model = Model(self.graph)
        line_num = 0
        myfile = '/'.join((self.rawdir, self.files[src_key]['file']))
        LOG.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[src_key]['genome_label']
        taxon_curie = 'NCBITaxon:' + tax_num
        species_name = self.globaltcid[taxon_curie]  # for logging

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_curie, None)
        model.addSynonym(taxon_curie, genome_label)

        geno.addGenome(taxon_curie, genome_label, genome_id)

        # add the build and the taxon it's in
        build_num = self.files[src_key]['build_num']
        build_id = 'UCSC:' + build_num
        geno.addReferenceGenome(build_id, build_num, taxon_curie)

        # cat (at least)  also has  chr[BDAECF]... hex? must be a back cat.
        if tax_num == self.localtt['Felis catus']:
            placed_scaffold_regex = re.compile(
                r'(chr(?:[BDAECF]\d+|X|Y|Z|W|M|))$')
        else:
            placed_scaffold_regex = re.compile(r'(chr(?:\d+|X|Y|Z|W|M))$')
        unlocalized_scaffold_regex = re.compile(r'_(\w+)_random')
        unplaced_scaffold_regex = re.compile(r'chr(Un(?:_\w+)?)')

        # process the bands
        col = self.files[src_key]['columns']

        with gzip.open(myfile, 'rb') as binreader:
            for line in binreader:
                line_num += 1
                # skip comments
                line = line.decode().strip()
                if line[0] == '#' or line_num > limit:
                    continue
                # chr13	4500000	10000000	p12	stalk
                row = line.split('\t')
                scaffold = row[col.index('chrom')].strip()
                start = row[col.index('chromStart')]
                stop = row[col.index('chromEnd')]
                band_num = row[col.index('name')].strip()
                rtype = row[col.index('gieStain')]

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1

                mch = placed_scaffold_regex.match(scaffold)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = mch.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold at the class level
                    # LOG.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = unlocalized_scaffold_regex.match(scaffold)
                m_chr_unplaced = unplaced_scaffold_regex.match(scaffold)

                scaffold_num = None
                if mch:
                    pass
                elif m_chr_unloc is not None and len(
                        m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num + '_' + m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and len(
                        m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                # else:
                #    LOG.error(
                #        "There's a chr pattern that we aren't matching: %s", scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, tax_num, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(
                        chrom_num, taxon_curie,
                        self.files[src_key]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': self.globaltt['chromosome']
                        }
                elif scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': self.globaltt['assembly_component'],
                        'synonym': scaffold
                    }
                else:
                    LOG.info('%s line %i DROPPED chromosome/scaffold  %s',
                             species_name, line_num, scaffold)

                parents = list()

                # see it new types have showed up
                if rtype is not None and rtype not in [
                        'gneg', 'gpos25', 'gpos33', 'gpos50', 'gpos66',
                        'gpos75', 'gpos100', 'acen', 'gvar', 'stalk'
                ]:
                    LOG.info('Unknown gieStain type "%s" in %s at %i', rtype,
                             src_key, line_num)
                    self.globaltt[rtype]  # blow up

                if rtype == 'acen':  # hacky, revisit if ontology improves
                    rtype = self.localtt[rtype]

                if band_num is not None and band_num != '' and \
                        rtype is not None and rtype != '':
                    # add the specific band
                    mybands[chrom_num + band_num] = {
                        'min': start,
                        'max': stop,
                        'chr': chrom_num,
                        'ref': build_id,
                        'parent': None,
                        'stain': None,
                        'type': self.globaltt[rtype],
                    }

                    # add the staining intensity of the band
                    # get the parent bands, and make them unique
                    parents = list(monochrom.make_parent_bands(
                        band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num +
                                band_num]['parent'] = chrom_num + parents[0]
                    # else:   # band has no parents

                # loop through the parents and add them to the dict
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i], self.graph)

                    pnum = chrom_num + parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum is not None and pnum not in mybands.keys():
                        # add the parental band to the hash
                        bnd = {
                            'min': min(sta, sto),
                            'max': max(sta, sto),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': rti
                        }
                        mybands[pnum] = bnd
                    elif pnum is not None:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        bnd = mybands.get(pnum)
                        bnd['min'] = min(sta, sto, bnd['min'])
                        bnd['max'] = max(sta, sto, bnd['max'])
                        mybands[pnum] = bnd

                        # also, set the max for the chrom
                        chrom = mybands.get(chrom_num)
                        chrom['max'] = max(sta, sto, chrom['max'])
                        mybands[chrom_num] = chrom
                    else:
                        LOG.error("pnum is None")
                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num + parents[i + 1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        binreader.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for bnd in mybands.keys():
            myband = mybands.get(bnd)
            band_class_id = makeChromID(bnd, tax_num, 'CHR')
            band_class_label = makeChromLabel(bnd, genome_label)
            band_build_id = makeChromID(bnd, build_num, 'MONARCH')
            band_build_label = makeChromLabel(bnd, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(myband['chr'], build_num,
                                            'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != self.globaltt['assembly_component']:
                model.addClassToGraph(band_class_id, band_class_label,
                                      myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == self.globaltt['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == self.globaltt['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                bfeature.addFeatureProperty(
                    self.globaltt['has_sequence_attribute'], myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)
Exemple #11
0
    def _get_chrbands(self, limit, taxon):
        """
        For the given taxon, it will fetch the chr band file.
        We will not deal with the coordinate information with this parser.
        Here, we only are concerned with building the partonomy.
        :param limit:
        :return:

        """
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)

        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:'+taxon

        # add the taxon as a class.  adding the class label elsewhere
        self.gu.addClassToGraph(self.graph, taxon_id, None)
        self.gu.addSynonym(self.graph, taxon_id, genome_label)

        self.gu.loadObjectProperties(self.graph, Feature.object_properties)

        genome_id = geno.makeGenomeID(taxon_id)
        geno.addGenome(taxon_id, genome_label)
        self.gu.addOWLPropertyClassRestriction(
            self.graph, genome_id, Genotype.object_properties['in_taxon'],
            taxon_id)

        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match(r'^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (chrom, start, stop, band, rtype) = line.split('\t')
                line_counter += 1

                # NOTE
                # some less-finished genomes have placed and unplaced scaffolds
                # * Placed scaffolds:
                #    Scaffold has an oriented location within a chromosome.
                # * Unlocalized scaffolds:
                #     scaffold 's chromosome  is known,
                #     scaffold's position, orientation or both is not known.
                # *Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to.

                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'chr(\d+|X|Y|Z|W|MT|M)'

                # TODO unused
                # unlocalized_scaffold_pattern = \
                #    placed_scaffold_pattern + r'_(\w+)_random'
                # unplaced_scaffold_pattern = r'chrUn_(\w+)'

                m = re.match(placed_scaffold_pattern+r'$', chrom)
                if m is not None and len(m.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    # ch = m.group(1)  # TODO unused
                    pass
                else:
                    # let's skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Skipping non-placed chromosome %s", chrom)
                    continue
                # the chrom class, taxon as the reference
                cclassid = makeChromID(chrom, taxon, 'CHR')

                # add the chromosome as a class
                geno.addChromosomeClass(chrom, taxon_id, genome_label)
                self.gu.addOWLPropertyClassRestriction(
                    self.graph, cclassid,
                    self.gu.object_properties['member_of'], genome_id)

                # add the band(region) as a class
                maplocclass_id = cclassid+band
                maplocclass_label = makeChromLabel(chrom+band, genome_label)
                if band is not None and band.strip() != '':
                    region_type_id = self.map_type_of_region(rtype)
                    self.gu.addClassToGraph(
                        self.graph, maplocclass_id, maplocclass_label,
                        region_type_id)
                else:
                    region_type_id = Feature.types['chromosome']
                # add the staining intensity of the band
                if re.match(r'g(neg|pos|var)', rtype):
                    if region_type_id in [
                            Feature.types['chromosome_band'],
                            Feature.types['chromosome_subband']]:
                        stain_type = Feature.types.get(rtype)
                        if stain_type is not None:
                            self.gu.addOWLPropertyClassRestriction(
                                self.graph, maplocclass_id,
                                Feature.properties['has_staining_intensity'],
                                Feature.types.get(rtype))
                    else:
                        # usually happens if it's a chromosome because
                        # they don't actually have banding info
                        logger.info("feature type %s != chr band",
                                    region_type_id)
                else:
                    logger.warning('staining type not found: %s', rtype)

                # get the parent bands, and make them unique
                parents = list(self.make_parent_bands(band, set()))
                # alphabetical sort will put them in smallest to biggest
                parents.sort(reverse=True)

                # print("PARENTS of",maplocclass_id,"=",parents)
                # add the parents to the graph, in hierarchical order
                # TODO this is somewhat inefficient due to
                # re-adding upper-level nodes when iterating over the file
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    pclassid = cclassid+parents[i]  # class chr parts
                    pclass_label = \
                        makeChromLabel(chrom+parents[i], genome_label)

                    rti = getChrPartTypeByNotation(parents[i])

                    self.gu.addClassToGraph(
                        self.graph, pclassid, pclass_label, rti)

                    # for canonical chromosomes,
                    # then the subbands are subsequences of the full band
                    # add the subsequence stuff as restrictions
                    if i < len(parents) - 1:
                        pid = cclassid+parents[i+1]   # the instance
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pclassid,
                            Feature.object_properties['is_subsequence_of'],
                            pid)
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pid,
                            Feature.object_properties['has_subsequence'],
                            pclassid)

                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pclassid,
                            Feature.object_properties['is_subsequence_of'],
                            cclassid)
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, cclassid,
                            Feature.object_properties['has_subsequence'],
                            pclassid)

                # connect the band here to the first one in the parent list
                if len(parents) > 0:
                    self.gu.addOWLPropertyClassRestriction(
                        self.graph, maplocclass_id,
                        Feature.object_properties['is_subsequence_of'],
                        cclassid+parents[0])
                    self.gu.addOWLPropertyClassRestriction(
                        self.graph, cclassid+parents[0],
                        Feature.object_properties['has_subsequence'],
                        maplocclass_id)

                if limit is not None and line_counter > limit:
                    break

        self.gu.loadAllProperties(self.graph)

        # TODO figure out the staining intensities for the encompassing bands

        return
Exemple #12
0
    def _get_chrbands(self, limit, taxon):
        """
        :param limit:
        :return:

        """
        model = Model(self.graph)
        # TODO PYLINT figure out what limit was for and why it is unused
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:'+taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        geno.addGenome(taxon_id, genome_label)

        # add the build and the taxon it's in
        build_num = self.files[taxon]['build_num']
        build_id = 'UCSC:'+build_num
        geno.addReferenceGenome(build_id, build_num, taxon_id)

        # process the bands
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (scaffold, start, stop, band_num, rtype) = line.split('\t')
                line_counter += 1

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'(chr(?:\d+|X|Y|Z|W|M))'
                unlocalized_scaffold_pattern = \
                    placed_scaffold_pattern+r'_(\w+)_random'
                unplaced_scaffold_pattern = r'chr(Un(?:_\w+)?)'

                m = re.match(placed_scaffold_pattern+r'$', scaffold)
                if m is not None and len(m.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = m.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = re.match(unlocalized_scaffold_pattern, scaffold)
                m_chr_unplaced = re.match(unplaced_scaffold_pattern, scaffold)

                scaffold_num = None
                if m:
                    pass
                elif m_chr_unloc is not None and\
                        len(m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num+'_'+m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and\
                        len(m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                else:
                    logger.error(
                        "There's a chr pattern that we aren't matching: %s",
                        scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(
                        chrom_num, taxon_id, self.files[taxon]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': Feature.types['chromosome']}

                if scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': Feature.types['assembly_component'],
                        'synonym': scaffold}

                if band_num is not None and band_num.strip() != '':
                    # add the specific band
                    mybands[chrom_num+band_num] = {'min': start,
                                                   'max': stop,
                                                   'chr': chrom_num,
                                                   'ref': build_id,
                                                   'parent': None,
                                                   'stain': None,
                                                   'type': None}

                    # add the staining intensity of the band
                    if re.match(r'g(neg|pos|var)', rtype):
                        mybands[chrom_num+band_num]['stain'] = \
                            Feature.types.get(rtype)

                    # get the parent bands, and make them unique
                    parents = list(
                        monochrom.make_parent_bands(band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num+band_num]['parent'] = \
                            chrom_num+parents[0]
                else:
                    # TODO PYLINT why is 'parent'
                    # a list() a couple of lines up and a set() here?
                    parents = set()

                # loop through the parents and add them to the hash
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i])

                    pnum = chrom_num+parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum not in mybands.keys():
                        # add the parental band to the hash
                        b = {'min': min(sta, sto),
                             'max': max(sta, sto),
                             'chr': chrom_num,
                             'ref': build_id,
                             'parent': None,
                             'stain': None,
                             'type': rti}
                        mybands[pnum] = b
                    else:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        b = mybands.get(pnum)
                        b['min'] = min(sta, sto, b['min'])
                        b['max'] = max(sta, sto, b['max'])
                        mybands[pnum] = b

                        # also, set the max for the chrom
                        c = mybands.get(chrom_num)
                        c['max'] = max(sta, sto, c['max'])
                        mybands[chrom_num] = c

                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num+parents[i+1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        f.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for b in mybands.keys():
            myband = mybands.get(b)
            band_class_id = makeChromID(b, taxon, 'CHR')
            band_class_label = makeChromLabel(b, genome_label)
            band_build_id = makeChromID(b, build_num, 'MONARCH')
            band_build_label = makeChromLabel(b, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(
                myband['chr'], build_num, 'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != Feature.types['assembly_component']:
                model.addClassToGraph(band_class_id,
                                      band_class_label, myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == Feature.types['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == Feature.types['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                # TODO 'has_staining_intensity' being dropped by MB
                bfeature.addFeatureProperty(
                    Feature.properties['has_staining_intensity'],
                    myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)

        return
Exemple #13
0
    def _get_chrbands(self, limit, taxon):
        """
        :param limit:
        :return:

        """
        model = Model(self.graph)
        # TODO PYLINT figure out what limit was for and why it is unused
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom(self.graph_type, self.are_bnodes_skized)

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:' + taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        geno.addGenome(taxon_id, genome_label)

        # add the build and the taxon it's in
        build_num = self.files[taxon]['build_num']
        build_id = 'UCSC:' + build_num
        geno.addReferenceGenome(build_id, build_num, taxon_id)

        # process the bands
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (scaffold, start, stop, band_num, rtype) = line.split('\t')
                line_counter += 1

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #   although the chromosome within which the scaffold occurs
                #   is known, the scaffold's position or orientation
                #   is not known.
                # * Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to
                #
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'(chr(?:\d+|X|Y|Z|W|M))'
                unlocalized_scaffold_pattern = placed_scaffold_pattern + r'_(\w+)_random'
                unplaced_scaffold_pattern = r'chr(Un(?:_\w+)?)'

                mch = re.match(placed_scaffold_pattern + r'$', scaffold)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    chrom_num = mch.group(1)
                else:
                    # skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Found non-placed chromosome %s", scaffold)
                    chrom_num = None

                m_chr_unloc = re.match(unlocalized_scaffold_pattern, scaffold)
                m_chr_unplaced = re.match(unplaced_scaffold_pattern, scaffold)

                scaffold_num = None
                if mch:
                    pass
                elif m_chr_unloc is not None and len(
                        m_chr_unloc.groups()) == 2:
                    chrom_num = m_chr_unloc.group(1)
                    scaffold_num = chrom_num + '_' + m_chr_unloc.group(2)
                elif m_chr_unplaced is not None and len(
                        m_chr_unplaced.groups()) == 1:
                    scaffold_num = m_chr_unplaced.group(1)
                else:
                    logger.error(
                        "There's a chr pattern that we aren't matching: %s",
                        scaffold)

                if chrom_num is not None:
                    # the chrom class (generic) id
                    chrom_class_id = makeChromID(chrom_num, taxon, 'CHR')

                    # first, add the chromosome class (in the taxon)
                    geno.addChromosomeClass(chrom_num, taxon_id,
                                            self.files[taxon]['genome_label'])

                    # then, add the chromosome instance (from the given build)
                    geno.addChromosomeInstance(chrom_num, build_id, build_num,
                                               chrom_class_id)

                    # add the chr to the hashmap of coordinates for this build
                    # the chromosome coordinate space is itself
                    if chrom_num not in mybands.keys():
                        mybands[chrom_num] = {
                            'min': 0,
                            'max': int(stop),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': self.globaltt['chromosome']
                        }

                if scaffold_num is not None:
                    # this will put the coordinates of the scaffold
                    # in the scaffold-space and make sure that the scaffold
                    # is part of the correct parent.
                    # if chrom_num is None,
                    # then it will attach it to the genome,
                    # just like a reg chrom
                    mybands[scaffold_num] = {
                        'min': start,
                        'max': stop,
                        'chr': scaffold_num,
                        'ref': build_id,
                        'parent': chrom_num,
                        'stain': None,
                        'type': self.globaltt['assembly_component'],
                        'synonym': scaffold
                    }

                if band_num is not None and band_num.strip() != '':
                    # add the specific band
                    mybands[chrom_num + band_num] = {
                        'min': start,
                        'max': stop,
                        'chr': chrom_num,
                        'ref': build_id,
                        'parent': None,
                        'stain': None,
                        'type': None
                    }

                    # add the staining intensity of the band
                    if re.match(r'g(neg|pos|var)', rtype):
                        mybands[chrom_num +
                                band_num]['stain'] = self.resolve(rtype)

                    # get the parent bands, and make them unique
                    parents = list(monochrom.make_parent_bands(
                        band_num, set()))
                    # alphabetical sort will put them in smallest to biggest,
                    # so we reverse
                    parents.sort(reverse=True)
                    # print('parents of',chrom,band,':',parents)

                    if len(parents) > 0:
                        mybands[chrom_num +
                                band_num]['parent'] = chrom_num + parents[0]
                else:
                    # TODO PYLINT why is 'parent'
                    # a list() a couple of lines up and a set() here?
                    parents = set()

                # loop through the parents and add them to the hash
                # add the parents to the graph, in hierarchical order
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    rti = getChrPartTypeByNotation(parents[i])

                    pnum = chrom_num + parents[i]
                    sta = int(start)
                    sto = int(stop)
                    if pnum not in mybands.keys():
                        # add the parental band to the hash
                        bnd = {
                            'min': min(sta, sto),
                            'max': max(sta, sto),
                            'chr': chrom_num,
                            'ref': build_id,
                            'parent': None,
                            'stain': None,
                            'type': rti
                        }
                        mybands[pnum] = bnd
                    else:
                        # band already in the hash means it's a grouping band
                        # need to update the min/max coords
                        bnd = mybands.get(pnum)
                        bnd['min'] = min(sta, sto, bnd['min'])
                        bnd['max'] = max(sta, sto, bnd['max'])
                        mybands[pnum] = bnd

                        # also, set the max for the chrom
                        chrom = mybands.get(chrom_num)
                        chrom['max'] = max(sta, sto, chrom['max'])
                        mybands[chrom_num] = chrom

                    # add the parent relationships to each
                    if i < len(parents) - 1:
                        mybands[pnum]['parent'] = chrom_num + parents[i + 1]
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        mybands[pnum]['parent'] = chrom_num

        f.close()  # end looping through file

        # loop through the hash and add the bands to the graph
        for bnd in mybands.keys():
            myband = mybands.get(bnd)
            band_class_id = makeChromID(bnd, taxon, 'CHR')
            band_class_label = makeChromLabel(bnd, genome_label)
            band_build_id = makeChromID(bnd, build_num, 'MONARCH')
            band_build_label = makeChromLabel(bnd, build_num)
            # the build-specific chrom
            chrom_in_build_id = makeChromID(myband['chr'], build_num,
                                            'MONARCH')
            # if it's != part, then add the class
            if myband['type'] != self.globaltt['assembly_component']:
                model.addClassToGraph(band_class_id, band_class_label,
                                      myband['type'])
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   band_class_id)
            else:
                bfeature = Feature(self.graph, band_build_id, band_build_label,
                                   myband['type'])
                if 'synonym' in myband:
                    model.addSynonym(band_build_id, myband['synonym'])

            if myband['parent'] is None:
                if myband['type'] == self.globaltt['assembly_component']:
                    # since we likely don't know the chr,
                    # add it as a part of the build
                    geno.addParts(band_build_id, build_id)
            elif myband['type'] == self.globaltt['assembly_component']:
                # geno.addParts(band_build_id, chrom_in_build_id)
                parent_chrom_in_build = makeChromID(myband['parent'],
                                                    build_num, 'MONARCH')
                bfeature.addSubsequenceOfFeature(parent_chrom_in_build)

            # add the band as a feature
            # (which also instantiates the owl:Individual)
            bfeature.addFeatureStartLocation(myband['min'], chrom_in_build_id)
            bfeature.addFeatureEndLocation(myband['max'], chrom_in_build_id)
            if 'stain' in myband and myband['stain'] is not None:
                bfeature.addFeatureProperty(
                    self.globaltt['has_sequence_attribute'], myband['stain'])

            # type the band as a faldo:Region directly (add_region=False)
            # bfeature.setNoBNodes(self.nobnodes)
            # to come when we merge in ZFIN.py
            bfeature.addFeatureToGraph(False)

        return
Exemple #14
0
    def _get_gene_info(self, limit):
        """
        Currently loops through the gene_info file and
        creates the genes as classes, typed with SO.  It will add their label,
        any alternate labels as synonyms, alternate ids as equivalent classes.
        HPRDs get added as protein products.
        The chromosome and chr band get added as blank node regions,
        and the gene is faldo:located
        on the chr band.
        :param limit:
        :return:

        """
        src_key = 'gene_info'
        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        geno = Genotype(graph)
        model = Model(graph)

        # not unzipping the file
        LOG.info("Processing 'Gene Info' records")
        line_counter = 0
        gene_info = '/'.join((self.rawdir, self.files[src_key]['file']))
        LOG.info("FILE: %s", gene_info)
        LOG.info('Add taxa and genome classes for those in our filter')

        band_regex = re.compile(r'[0-9A-Z]+[pq](\d+)?(\.\d+)?$')
        for tax_num in self.tax_ids:
            tax_curie = ':'.join(('NCBITaxon', tax_num))
            # tax label can get added elsewhere
            geno.addGenome(tax_curie, tax_num)
            # label added elsewhere
            model.addClassToGraph(tax_curie, None)

        col = self.files[src_key]['columns']
        LOG.info('Begin reading & parsing')

        with gzip.open(gene_info, 'rb') as tsv:
            row = tsv.readline().decode().strip().split('\t')
            row[0] = row[0][1:]  # strip comment char
            if not self.check_fileheader(col, row):
                pass

            for line in tsv:
                line = line.strip()
                line_counter += 1
                if line[0] == '#':  # skip comments
                    continue
                row = line.decode().strip().split('\t')

                # ##set filter=None in init if you don't want to have a filter
                # if self.id_filter is not None:
                #     if ((self.id_filter == 'taxids' and \
                #          (tax_num not in self.tax_ids))
                #           or (self.id_filter == 'geneids' and \
                #               (int(gene_num) not in self.gene_ids))):
                #         continue
                # #### end filter

                tax_num = row[col.index('tax_id')]
                gene_num = row[col.index('GeneID')]
                symbol = row[col.index('Symbol')]
                # = row[col.index('LocusTag')]
                synonyms = row[col.index('Synonyms')].strip()
                dbxrefs = row[col.index('dbXrefs')].strip()
                chrom = row[col.index('chromosome')].strip()
                map_loc = row[col.index('map_location')].strip()
                desc = row[col.index('description')]
                gtype = row[col.index('type_of_gene')].strip()
                # = row[col.index('Symbol_from_nomenclature_authority')]
                name = row[col.index('Full_name_from_nomenclature_authority')]
                # = row[col.index('Nomenclature_status')]
                other_designations = row[col.index(
                    'Other_designations')].strip()
                # = row[col.index('Modification_date')}
                # = row[col.index('Feature_type')]

                if self.test_mode and int(gene_num) not in self.gene_ids:
                    continue
                if not self.test_mode and tax_num not in self.tax_ids:
                    continue
                tax_curie = ':'.join(('NCBITaxon', tax_num))
                gene_id = ':'.join(('NCBIGene', gene_num))

                gene_type_id = self.resolve(gtype)

                if symbol == 'NEWENTRY':
                    label = None
                else:
                    label = symbol
                # sequence feature, not a gene
                if gene_type_id == self.globaltt['sequence_feature']:
                    self.class_or_indiv[gene_id] = 'I'
                else:
                    self.class_or_indiv[gene_id] = 'C'

                if not self.test_mode and limit is not None and line_counter > limit:
                    continue

                if self.class_or_indiv[gene_id] == 'C':
                    model.addClassToGraph(gene_id, label, gene_type_id, desc)
                    # NCBI will be the default leader (for non mods),
                    # so we will not add the leader designation here.
                else:
                    model.addIndividualToGraph(gene_id, label, gene_type_id,
                                               desc)
                    # in this case, they aren't genes.
                    # so we want someone else to be the leader

                if name != '-':
                    model.addSynonym(gene_id, name)

                if synonyms != '-':
                    for syn in synonyms.split('|'):
                        syn = syn.strip()
                        # unknown curies may occur here
                        if syn[:12] == 'AnimalQTLdb:' and \
                                tax_curie in self.informal_species:
                            syn = self.informal_species[
                                tax_curie] + 'QTL:' + syn[12:]
                            LOG.info('AnimalQTLdb: CHANGED to: %s', syn)
                        model.addSynonym(gene_id, syn,
                                         model.globaltt['has_related_synonym'])
                if other_designations != '-':
                    for syn in other_designations.split('|'):
                        model.addSynonym(gene_id, syn.strip(),
                                         model.globaltt['has_related_synonym'])

                if dbxrefs != '-':
                    self._add_gene_equivalencies(dbxrefs, gene_id, tax_curie)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # no idea why there's two bands listed - possibly 2 assemblies
                # 419     ART3      4    with   4q21.1|4p15.1-p14
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # this is of "unknown" type == susceptibility
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3
                # unlocated scaffold
                # 101928066       LOC101928066    1|Un    -\
                # mouse --> 2C3
                # 11435   Chrna1  2       2 C3|2 43.76 cM
                # mouse --> 11B1.1
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table
                # when there is > 1 listed
                # with the exception of human X|Y,
                # we will only take those that align to one chr

                # FIXME remove the chr mapping below
                # when we pull in the genomic coords
                if chrom != '-' and chrom != '':
                    if re.search(r'\|',
                                 chrom) and chrom not in ['X|Y', 'X; Y']:
                        # means that there's uncertainty in the mapping.
                        # so skip it
                        # TODO we'll need to figure out how to deal with
                        # >1 loc mapping
                        LOG.info(
                            '%s is non-uniquely mapped to %s. Skipping for now.',
                            gene_id, chrom)
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if(not re.match(
                    #        r'(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if chrom == 'X; Y':
                        chrom = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for chromosome in re.split(r'\|', chrom):
                        # assume that the chromosome label is added elsewhere
                        geno.addChromosomeClass(chromosome, tax_curie, None)
                        mychrom = makeChromID(chromosome, tax_num, 'CHR')
                        # temporarily use taxnum for the disambiguating label
                        mychrom_syn = makeChromLabel(chromosome, tax_num)
                        model.addSynonym(mychrom, mychrom_syn)

                        band_match = re.match(band_regex, map_loc)
                        if band_match is not None and len(
                                band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs,
                            # so make that kind of band
                            # not sure why this matches?
                            #   chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex
                            # per organism
                            # the maploc_id already has the numeric chromosome
                            # in it, strip it first
                            bid = re.sub(r'^' + chromosome, '', map_loc)
                            # the generic location (no coordinates)
                            maploc_id = makeChromID(chromosome + bid, tax_num,
                                                    'CHR')
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            # Assume it's type will be added elsewhere
                            band = Feature(graph, maploc_id, None, None)
                            band.addFeatureToGraph()
                            # add the band as the containing feature
                            graph.addTriple(gene_id,
                                            self.globaltt['is subsequence of'],
                                            maploc_id)
                        else:
                            # TODO handle these cases: examples are:
                            # 15q11-q22,Xp21.2-p11.23,15q22-qter,10q11.1-q24,
                            # 12p13.3-p13.2|12p13-p12,1p13.3|1p21.3-p13.1,
                            # 12cen-q21,22q13.3|22q13.3
                            LOG.debug('not regular band pattern for %s: %s',
                                      gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            graph.addTriple(gene_id,
                                            self.globaltt['is subsequence of'],
                                            mychrom)

                geno.addTaxon(tax_curie, gene_id)
Exemple #15
0
    def _get_chrbands(self, limit, taxon):
        """
        For the given taxon, it will fetch the chr band file.
        We will not deal with the coordinate information with this parser.
        Here, we only are concerned with building the partonomy.
        :param limit:
        :return:

        """
        model = Model(self.graph)
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)

        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:' + taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        genome_id = geno.makeGenomeID(taxon_id)
        geno.addGenome(taxon_id, genome_label)
        model.addOWLPropertyClassRestriction(
            genome_id, self.globaltt['in taxon'],
            taxon_id)

        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match(r'^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (chrom, start, stop, band, rtype) = line.split('\t')
                line_counter += 1

                # NOTE
                # some less-finished genomes have placed and unplaced scaffolds
                # * Placed scaffolds:
                #    Scaffold has an oriented location within a chromosome.
                # * Unlocalized scaffolds:
                #     scaffold 's chromosome  is known,
                #     scaffold's position, orientation or both is not known.
                # *Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to.

                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1
                placed_scaffold_pattern = r'chr(\d+|X|Y|Z|W|MT|M)'

                # TODO unused
                # unlocalized_scaffold_pattern = \
                #    placed_scaffold_pattern + r'_(\w+)_random'
                # unplaced_scaffold_pattern = r'chrUn_(\w+)'

                m = re.match(placed_scaffold_pattern+r'$', chrom)
                if m is not None and len(m.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    # ch = m.group(1)  # TODO unused
                    pass
                else:
                    # let's skip over anything that isn't a placed_scaffold
                    # at the class level
                    logger.info("Skipping non-placed chromosome %s", chrom)
                    continue
                # the chrom class, taxon as the reference
                cclassid = makeChromID(chrom, taxon, 'CHR')

                # add the chromosome as a class
                geno.addChromosomeClass(chrom, taxon_id, genome_label)
                model.addOWLPropertyClassRestriction(
                    cclassid, self.globaltt['member of'], genome_id)

                # add the band(region) as a class
                maplocclass_id = cclassid+band
                maplocclass_label = makeChromLabel(chrom+band, genome_label)
                if band is not None and band.strip() != '':
                    region_type_id = self.map_type_of_region(rtype)
                    model.addClassToGraph(
                        maplocclass_id, maplocclass_label,
                        region_type_id)
                else:
                    region_type_id = self.globaltt['chromosome']
                # add the staining intensity of the band
                if re.match(r'g(neg|pos|var)', rtype):
                    if region_type_id in [
                            self.globaltt['chromosome_band'],
                            self.globaltt['chromosome_subband']]:
                        stain_type = self.resolve(rtype)
                        if stain_type is not None:
                            model.addOWLPropertyClassRestriction(
                                maplocclass_id,
                                self.globaltt['has_sequence_attribute'],
                                self.resolve(rtype))
                    else:
                        # usually happens if it's a chromosome because
                        # they don't actually have banding info
                        logger.info("feature type %s != chr band",
                                    region_type_id)
                else:
                    logger.warning('staining type not found: %s', rtype)

                # get the parent bands, and make them unique
                parents = list(self.make_parent_bands(band, set()))
                # alphabetical sort will put them in smallest to biggest
                parents.sort(reverse=True)

                # print("PARENTS of",maplocclass_id,"=",parents)
                # add the parents to the graph, in hierarchical order
                # TODO this is somewhat inefficient due to
                # re-adding upper-level nodes when iterating over the file
                # TODO PYLINT Consider using enumerate
                # instead of iterating with range and len
                for i in range(len(parents)):
                    parent_i = parents[i].strip()
                    if parent_i is not None and parent_i != "":
                        pclassid = cclassid + parent_i # class chr parts
                        pclass_label = makeChromLabel(chrom + parent_i, genome_label)
                        rti = getChrPartTypeByNotation(parent_i, self.graph)
                        model.addClassToGraph(pclassid, pclass_label, rti)

                    # for canonical chromosomes,
                    # then the subbands are subsequences of the full band
                    # add the subsequence stuff as restrictions
                    if i < len(parents) - 1:
                        pid = cclassid+parents[i+1]   # the instance
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'], pid)
                        model.addOWLPropertyClassRestriction(
                            pid, self.globaltt['has subsequence'],  pclassid)

                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'], cclassid)
                        model.addOWLPropertyClassRestriction(
                            cclassid, self.globaltt['has subsequence'],  pclassid)

                # connect the band here to the first one in the parent list
                if len(parents) > 0:
                    model.addOWLPropertyClassRestriction(
                        maplocclass_id, self.globaltt['is subsequence of'],
                        cclassid+parents[0])
                    model.addOWLPropertyClassRestriction(
                        cclassid+parents[0],  self.globaltt['has subsequence'],
                        maplocclass_id)

                if limit is not None and line_counter > limit:
                    break

        # TODO figure out the staining intensities for the encompassing bands

        return
Exemple #16
0
    def _get_gene_info(self, limit):
        """
        Currently loops through the gene_info file and
        creates the genes as classes, typed with SO.  It will add their label,
        any alternate labels as synonyms, alternate ids as equivlaent classes.
        HPRDs get added as protein products.
        The chromosome and chr band get added as blank node regions,
        and the gene is faldo:located
        on the chr band.
        :param limit:
        :return:

        """
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)
        model = Model(g)

        # not unzipping the file
        logger.info("Processing 'Gene Info' records")
        line_counter = 0
        gene_info = '/'.join((self.rawdir, self.files['gene_info']['file']))
        logger.info("FILE: %s", gene_info)
        # Add taxa and genome classes for those in our filter
        for tax_num in self.tax_ids:
            tax_id = ':'.join(('NCBITaxon', str(tax_num)))
            # tax label can get added elsewhere
            geno.addGenome(tax_id, str(tax_num))
            # label added elsewhere
            model.addClassToGraph(tax_id, None)
        with gzip.open(gene_info, 'rb') as f:
            row = f.readline().decode().strip().split('\t')
            logger.info("Header has %i columns", len(row))
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match(r'^#', line):
                    continue
                (tax_num, gene_num, symbol, locustag, synonyms, xrefs, chrom,
                 map_loc, desc, gtype, authority_symbol, name,
                 nomenclature_status, other_designations,
                 modification_date, feature_type) = line.split('\t')

                # ##set filter=None in init if you don't want to have a filter
                # if self.filter is not None:
                #     if ((self.filter == 'taxids' and \
                #          (int(tax_num) not in self.tax_ids))
                #           or (self.filter == 'geneids' and \
                #               (int(gene_num) not in self.gene_ids))):
                #         continue
                # #### end filter

                if self.testMode and int(gene_num) not in self.gene_ids:
                    continue

                if not self.testMode and int(tax_num) not in self.tax_ids:
                    continue

                line_counter += 1

                gene_id = ':'.join(('NCBIGene', gene_num))
                tax_id = ':'.join(('NCBITaxon', tax_num))
                gene_type_id = self.map_type_of_gene(gtype.strip())

                if symbol == 'NEWENTRY':
                    label = None
                else:
                    label = symbol
                # sequence feature, not a gene
                if gene_type_id == 'SO:0000110':
                    self.class_or_indiv[gene_id] = 'I'
                else:
                    self.class_or_indiv[gene_id] = 'C'

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    continue

                if self.class_or_indiv[gene_id] == 'C':
                    model.addClassToGraph(gene_id, label, gene_type_id, desc)
                    # NCBI will be the default leader,
                    # so we will not add the leader designation here.
                else:
                    model.addIndividualToGraph(
                        gene_id, label, gene_type_id, desc)
                    # in this case, they aren't genes.
                    # so we want someone else to be the leader.

                if name != '-':
                    model.addSynonym(gene_id, name)
                if synonyms.strip() != '-':
                    for s in synonyms.split('|'):
                        model.addSynonym(
                            gene_id, s.strip(),
                            Assoc.annotation_properties['hasRelatedSynonym'])
                if other_designations.strip() != '-':
                    for s in other_designations.split('|'):
                        model.addSynonym(
                            gene_id, s.strip(),
                            Assoc.annotation_properties['hasRelatedSynonym'])
                if xrefs.strip() != '-':
                    self._add_gene_equivalencies(xrefs, gene_id, tax_num)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # no idea why there's two bands listed - possibly 2 assemblies
                # 419     ART3      4    with   4q21.1|4p15.1-p14
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # this is of "unknown" type == susceptibility
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3
                # unlocated scaffold
                # 101928066       LOC101928066    1|Un    -\
                # mouse --> 2C3
                # 11435   Chrna1  2       2 C3|2 43.76 cM
                # mouse --> 11B1.1
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table
                # when there is > 1 listed
                # with the exception of human X|Y,
                # we will only take those that align to one chr

                # FIXME remove the chr mapping below
                # when we pull in the genomic coords
                if str(chrom) != '-' and str(chrom) != '':
                    if re.search(r'\|', str(chrom)) and \
                            str(chrom) not in ['X|Y', 'X; Y']:
                        # means that there's uncertainty in the mapping.
                        # so skip it
                        # TODO we'll need to figure out how to deal with
                        # >1 loc mapping
                        logger.info(
                            '%s is non-uniquely mapped to %s.' +
                            ' Skipping for now.',
                            gene_id, str(chr))
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if(not re.match(
                    #        r'(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if str(chrom) == 'X; Y':
                        chrom = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for c in re.split(r'\|', str(chrom)):
                        # assume that the chromosome label is added elsewhere
                        geno.addChromosomeClass(c, tax_id, None)
                        mychrom = makeChromID(c, tax_num, 'CHR')
                        # temporarily use taxnum for the disambiguating label
                        mychrom_syn = makeChromLabel(c, tax_num)
                        model.addSynonym(mychrom, mychrom_syn)
                        band_match = re.match(
                            r'[0-9A-Z]+[pq](\d+)?(\.\d+)?$', map_loc)
                        if band_match is not None and \
                                len(band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs,
                            # so make that kind of band
                            # not sure why this matches?
                            #   chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex
                            # per organism
                            # the maploc_id already has the numeric chromosome
                            # in it, strip it first
                            bid = re.sub(r'^'+c, '', map_loc)
                            # the generic location (no coordinates)
                            maploc_id = makeChromID(c+bid, tax_num, 'CHR')
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            # Assume it's type will be added elsewhere
                            band = Feature(g, maploc_id, None, None)
                            band.addFeatureToGraph()
                            # add the band as the containing feature
                            g.addTriple(
                                gene_id,
                                Feature.object_properties['is_subsequence_of'],
                                maploc_id)
                        else:
                            # TODO handle these cases: examples are:
                            # 15q11-q22,Xp21.2-p11.23,15q22-qter,10q11.1-q24,
                            # 12p13.3-p13.2|12p13-p12,1p13.3|1p21.3-p13.1,
                            # 12cen-q21,22q13.3|22q13.3
                            logger.debug(
                                'not regular band pattern for %s: %s',
                                gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            g.addTriple(
                                gene_id,
                                Feature.object_properties['is_subsequence_of'],
                                mychrom)

                geno.addTaxon(tax_id, gene_id)

        return
Exemple #17
0
    def _get_chrbands(self, limit, taxon, genome_id=None):
        """
        For the given taxon, it will fetch the chr band file.
        We will not deal with the coordinate information with this parser.
        Here, we only are concerned with building the partonomy.
        :param limit:
        :param: taxon:
        :param: genome
        :return:

        """
        model = Model(self.graph)
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        LOG.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)

        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:' + taxon

        # add the taxon as a class.  adding the class label elsewhere
        model.addClassToGraph(taxon_id, None)
        model.addSynonym(taxon_id, genome_label)

        if genome_id is None:
            genome_id = geno.makeGenomeID(
                taxon_id)  # makes a blank node always
        geno.addGenome(taxon_id, genome_label, genome_id)
        model.addOWLPropertyClassRestriction(genome_id,
                                             self.globaltt['in taxon'],
                                             taxon_id)

        placed_scaffold_pattern = r'chr(\d+|X|Y|Z|W|MT|M)'
        # currently unused patterns
        # unlocalized_scaffold_pattern = placed_scaffold_pattern + r'_(\w+)_random'
        # unplaced_scaffold_pattern = r'chrUn_(\w+)'

        col = ['chrom', 'start', 'stop', 'band', 'rtype']
        with gzip.open(myfile, 'rb') as reader:
            for line in reader:
                line_counter += 1
                # skip comments
                line = line.decode().strip()
                if line[0] == '#':
                    continue
                # chr13	4500000	10000000	p12	stalk
                row = line.split('\t')
                chrom = row[col.index('chrom')]
                band = row[col.index('band')]
                rtype = row[col.index('rtype')]
                # NOTE
                # some less-finished genomes have placed and unplaced scaffolds
                # * Placed scaffolds:
                #    Scaffold has an oriented location within a chromosome.
                # * Unlocalized scaffolds:
                #     scaffold 's chromosome  is known,
                #     scaffold's position, orientation or both is not known.
                # *Unplaced scaffolds:
                #   it is not known which chromosome the scaffold belongs to.
                # find out if the thing is a full on chromosome, or a scaffold:
                # ex: unlocalized scaffold: chr10_KL568008v1_random
                # ex: unplaced scaffold: chrUn_AABR07022428v1

                mch = re.match(placed_scaffold_pattern + r'$', chrom)
                if mch is not None and len(mch.groups()) == 1:
                    # the chromosome is the first match of the pattern
                    # chrom = m.group(1)  # TODO unused
                    pass
                else:
                    # let's skip over anything that isn't a placed_scaffold
                    # LOG.info("Skipping non-placed chromosome %s", chrom)  # chatty
                    continue
                # the chrom class, taxon as the reference
                cclassid = makeChromID(chrom, taxon, 'CHR')

                # add the chromosome as a class
                geno.addChromosomeClass(chrom, taxon_id, genome_label)
                model.addOWLPropertyClassRestriction(
                    cclassid, self.globaltt['member of'], genome_id)

                # add the band(region) as a class
                maplocclass_id = cclassid + band
                maplocclass_label = makeChromLabel(chrom + band, genome_label)
                if band is not None and band.strip() != '':

                    region_type_id = self.map_type_of_region(rtype)
                    model.addClassToGraph(maplocclass_id, maplocclass_label,
                                          region_type_id)
                else:
                    region_type_id = self.globaltt['chromosome']

                # add the staining intensity of the band
                if re.match(r'g(neg|pos|var)', rtype):
                    if region_type_id in [
                            self.globaltt['chromosome_band'],
                            self.globaltt['chromosome_subband']
                    ]:
                        stain_type = self.resolve(rtype)
                        if stain_type is not None:
                            model.addOWLPropertyClassRestriction(
                                maplocclass_id,
                                self.globaltt['has_sequence_attribute'],
                                self.resolve(rtype))
                    else:
                        # usually happens if it's a chromosome (SO:000340) because
                        # they don't actually have banding info
                        LOG.info("feature type '%s' is not chr band",
                                 self.globaltcid[region_type_id])
                else:
                    LOG.info('staining type not found for: %s', rtype)

                # get the parent bands, and make them unique
                parents = list(self.make_parent_bands(band, set()))
                # alphabetical sort will put them in smallest to biggest
                parents.sort(reverse=True)

                # print("PARENTS of", maplocclass_id, "=", parents)
                # add the parents to the graph, in hierarchical order
                # TODO this is somewhat inefficient due to
                # re-adding upper-level nodes when iterating over the file
                for prnt in parents:
                    parent = prnt.strip()
                    if parent is None or parent == "":
                        continue
                    pclassid = cclassid + parent  # class chr parts
                    pclass_label = makeChromLabel(chrom + parent, genome_label)
                    rti = getChrPartTypeByNotation(parent, self.graph)
                    model.addClassToGraph(pclassid, pclass_label, rti)
                    # for canonical chromosomes,
                    # then the subbands are subsequences of the full band
                    # add the subsequence stuff as restrictions

                    if prnt != parents[-1]:
                        grandparent = 1 + parents.index(prnt)
                        pid = cclassid + parents[grandparent]  # the instance
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'], pid)
                        model.addOWLPropertyClassRestriction(
                            pid, self.globaltt['has subsequence'], pclassid)
                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        model.addOWLPropertyClassRestriction(
                            pclassid, self.globaltt['is subsequence of'],
                            cclassid)
                        model.addOWLPropertyClassRestriction(
                            cclassid, self.globaltt['has subsequence'],
                            pclassid)

                # connect the band here to the first one in the parent list
                if len(parents) > 0:
                    model.addOWLPropertyClassRestriction(
                        maplocclass_id, self.globaltt['is subsequence of'],
                        cclassid + parents[0])
                    model.addOWLPropertyClassRestriction(
                        cclassid + parents[0],
                        self.globaltt['has subsequence'], maplocclass_id)

                if limit is not None and line_counter > limit:
                    break