def constrained_spherical_deconvolution(dir_src, dir_out, verbose=False):

    # Load data
    fbval = pjoin(dir_src, 'bvals_' + par_b_tag)
    fbvec = pjoin(dir_src, 'bvecs_' + par_b_tag)
    fdwi =  pjoin(dir_src, 'data_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')
    #fmask = pjoin(dir_src, 'nodif_brain_mask_' + par_dim_tag + '.nii.gz')
    fmask = pjoin(dir_src, 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=par_b0_threshold)
    data, affine = load_nifti(fdwi, verbose)
    mask, _ = load_nifti(fmask, verbose)

    sphere = get_sphere('symmetric724')

    response, ratio = auto_response(gtab, data, roi_radius=par_ar_radius, 
                                    fa_thr=par_ar_fa_th)
    # print('Response function', response)

    # Model fitting
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd_model.fit(data, mask=mask)

    # Saving Spherical Harmonic Coefficient
    out_peaks = 'sh_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
    save_nifti(pjoin(dir_out, out_peaks), csd_fit.shm_coeff, affine)
Exemple #2
0
def test_response_from_mask():
    fdata, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    data = nib.load(fdata).get_data()

    gtab = gradient_table(bvals, bvecs)
    ten = TensorModel(gtab)
    tenfit = ten.fit(data)
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    radius = 3

    for fa_thr in np.arange(0, 1, 0.1):
        response_auto, ratio_auto, nvoxels = auto_response(gtab,
                                                           data,
                                                           roi_center=None,
                                                           roi_radius=radius,
                                                           fa_thr=fa_thr,
                                                           return_number_of_voxels=True)

        ci, cj, ck = np.array(data.shape[:3]) / 2
        mask = np.zeros(data.shape[:3])
        mask[ci - radius: ci + radius,
             cj - radius: cj + radius,
             ck - radius: ck + radius] = 1

        mask[FA <= fa_thr] = 0
        response_mask, ratio_mask = response_from_mask(gtab, data, mask)

        assert_equal(int(np.sum(mask)), nvoxels)
        assert_array_almost_equal(response_mask[0], response_auto[0])
        assert_almost_equal(response_mask[1], response_auto[1])
        assert_almost_equal(ratio_mask, ratio_auto)
Exemple #3
0
def test_auto_response():
    fdata, fbvals, fbvecs = get_fnames('small_64D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    data = load_nifti_data(fdata)

    gtab = gradient_table(bvals, bvecs)
    radius = 3

    def test_fa_superior(FA, fa_thr):
        return FA > fa_thr

    def test_fa_inferior(FA, fa_thr):
        return FA < fa_thr

    predefined_functions = [fa_superior, fa_inferior]
    defined_functions = [test_fa_superior, test_fa_inferior]

    for fa_thr in np.arange(0.1, 1, 0.1):
        for predefined, defined in \
          zip(predefined_functions, defined_functions):
            response_predefined, ratio_predefined, nvoxels_predefined = \
                auto_response(gtab,
                              data,
                              roi_center=None,
                              roi_radius=radius,
                              fa_callable=predefined,
                              fa_thr=fa_thr,
                              return_number_of_voxels=True)

            response_defined, ratio_defined, nvoxels_defined = \
                auto_response(gtab,
                              data,
                              roi_center=None,
                              roi_radius=radius,
                              fa_callable=defined,
                              fa_thr=fa_thr,
                              return_number_of_voxels=True)

            assert_equal(nvoxels_predefined, nvoxels_defined)
            assert_array_almost_equal(response_predefined[0],
                                      response_defined[0])
            assert_almost_equal(response_predefined[1], response_defined[1])
            assert_almost_equal(ratio_predefined, ratio_defined)
Exemple #4
0
def test_auto_response_deprecated():
    with warnings.catch_warnings(record=True) as cw:
        warnings.simplefilter("always", DeprecationWarning)
        gtab, data, _, _, _ = get_test_data()
        _, _ = auto_response(gtab,
                             data,
                             roi_center=None,
                             roi_radius=1,
                             fa_thr=0.7)
        npt.assert_(issubclass(cw[0].category, DeprecationWarning))
Exemple #5
0
def test_auto_response():
    fdata, fbvals, fbvecs = get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    data = nib.load(fdata).get_data()

    gtab = gradient_table(bvals, bvecs)
    radius = 3

    def test_fa_superior(FA, fa_thr):
        return FA > fa_thr

    def test_fa_inferior(FA, fa_thr):
        return FA < fa_thr

    predefined_functions = [fa_superior, fa_inferior]
    defined_functions = [test_fa_superior, test_fa_inferior]

    for fa_thr in np.arange(0.1, 1, 0.1):
        for predefined, defined in zip(predefined_functions, defined_functions):
            response_predefined, ratio_predefined, nvoxels_predefined = auto_response(
                gtab,
                data,
                roi_center=None,
                roi_radius=radius,
                fa_callable=predefined,
                fa_thr=fa_thr,
                return_number_of_voxels=True)

            response_defined, ratio_defined, nvoxels_defined = auto_response(
                gtab,
                data,
                roi_center=None,
                roi_radius=radius,
                fa_callable=defined,
                fa_thr=fa_thr,
                return_number_of_voxels=True)

            assert_equal(nvoxels_predefined, nvoxels_defined)
            assert_array_almost_equal(response_predefined[0], response_defined[0])
            assert_almost_equal(response_predefined[1], response_defined[1])
            assert_almost_equal(ratio_predefined, ratio_defined)
Exemple #6
0
def fit_csd(data_files,
            bval_files,
            bvec_files,
            mask=None,
            response=None,
            sh_order=8,
            lambda_=1,
            tau=0.1,
            out_dir=None):
    """
    Fit the CSD model and save file with SH coefficients.

    Parameters
    ----------
    data_files : str or list
        Files containing DWI data. If this is a str, that's the full path to a
        single file. If it's a list, each entry is a full path.
    bval_files : str or list
        Equivalent to `data_files`.
    bvec_files : str or list
        Equivalent to `data_files`.
    mask : ndarray, optional
        Binary mask, set to True or 1 in voxels to be processed.
        Default: Process all voxels.
    out_dir : str, optional
        A full path to a directory to store the maps that get computed.
        Default: file with coefficients gets stored in the same directory as
        the first DWI file in `data_files`.

    Returns
    -------
    fname : the full path to the file containing the SH coefficients.
    """
    img, data, gtab, mask = ut.prepare_data(data_files, bval_files, bvec_files)
    if response is None:
        response, ratio = csd.auto_response(gtab,
                                            data,
                                            roi_radius=10,
                                            fa_thr=0.7)

    csdmodel = csd.ConstrainedSphericalDeconvModel(gtab,
                                                   response,
                                                   sh_order=sh_order)
    csdfit = csdmodel.fit(data, mask=mask)
    if out_dir is None:
        out_dir = op.join(op.split(data_files)[0], 'dki')

    if not op.exists(out_dir):
        os.makedirs(out_dir)

    aff = img.affine
    fname = op.join(out_dir, 'csd_sh_coeff.nii.gz')
    nib.save(nib.Nifti1Image(csdfit.shm_coeff, aff), fname)
    return fname
Exemple #7
0
def create_csd_model(data, gtab, white_matter, sh_order=6):
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, auto_response

    response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

    csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                response,
                                                sh_order=sh_order)
    csd_fit = csd_model.fit(data, mask=white_matter)

    return csd_fit
Exemple #8
0
def tracking_eudx4csd(dir_src, dir_out, verbose=False):

    # Load data
    fbval = pjoin(dir_src, 'bvals_' + par_b_tag)
    fbvec = pjoin(dir_src, 'bvecs_' + par_b_tag)
    fdwi = pjoin(dir_src, 'data_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')
    #fmask = pjoin(dir_src, 'nodif_brain_mask_' + par_dim_tag + '.nii.gz')
    fmask = pjoin(dir_src,
                  'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=par_b0_threshold)
    data, affine = load_nifti(fdwi, verbose)
    mask, _ = load_nifti(fmask, verbose)

    sphere = get_sphere('symmetric724')

    response, ratio = auto_response(gtab,
                                    data,
                                    roi_radius=par_ar_radius,
                                    fa_thr=par_ar_fa_th)
    # print('Response function', response)

    # Model fitting
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_peaks = peaks_from_model(csd_model,
                                 data,
                                 sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    # Computation of streamlines
    streamlines = EuDX(csd_peaks.peak_values,
                       csd_peaks.peak_indices,
                       seeds=par_eudx_seeds,
                       odf_vertices=sphere.vertices,
                       a_low=par_eudx_threshold)

    # Saving tractography
    voxel_size = (par_dim_vox, ) * 3
    dims = mask.shape[:3]
    hdr = nib.trackvis.empty_header()
    hdr['voxel_size'] = voxel_size
    hdr['voxel_order'] = 'LAS'
    hdr['dim'] = dims
    hdr['vox_to_ras'] = affine
    strm = ((sl, None, None) for sl in streamlines)
    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_csd_tag + '_' + par_eudx_tag + '.trk'
    trk_out = os.path.join(dir_out, trk_name)
    nib.trackvis.write(trk_out, strm, hdr, points_space='voxel')
Exemple #9
0
def quick_fodf(gtab,
               images,
               sphere=default_sphere,
               radius=10,
               fa_threshold=0.7):
    response, ratio = auto_response(gtab,
                                    images,
                                    roi_radius=radius,
                                    fa_thr=fa_threshold)

    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd_model.fit(images)
    csd_odf = csd_fit.odf(sphere)
    return csd_odf
Exemple #10
0
def _fit(gtab, data, mask, response=None, sh_order=8,
         lambda_=1, tau=0.1):
    """
    Helper function that does the core of fitting a model to data.
    """
    if response is None:
        response, ratio = csd.auto_response(gtab, data, roi_radius=10,
                                            fa_thr=0.7)

    csdmodel = csd.ConstrainedSphericalDeconvModel(gtab, response,
                                                   sh_order=sh_order)
    csdfit = csdmodel.fit(data, mask=mask)

    return csdfit
def tracking_eudx4csd(dir_src, dir_out, verbose=False):

    # Load data
    fbval = pjoin(dir_src, 'bvals_' + par_b_tag)
    fbvec = pjoin(dir_src, 'bvecs_' + par_b_tag)
    fdwi =  pjoin(dir_src, 'data_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')
    #fmask = pjoin(dir_src, 'nodif_brain_mask_' + par_dim_tag + '.nii.gz')
    fmask = pjoin(dir_src, 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=par_b0_threshold)
    data, affine = load_nifti(fdwi, verbose)
    mask, _ = load_nifti(fmask, verbose)

    sphere = get_sphere('symmetric724') 

    response, ratio = auto_response(gtab, data, roi_radius=par_ar_radius, 
                                    fa_thr=par_ar_fa_th)
    # print('Response function', response)

    # Model fitting
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_peaks = peaks_from_model(csd_model, 
                                 data, 
                                 sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    # Computation of streamlines
    streamlines = EuDX(csd_peaks.peak_values,
                       csd_peaks.peak_indices, 
                       seeds=par_eudx_seeds,
                       odf_vertices= sphere.vertices,
                       a_low=par_eudx_threshold)

    # Saving tractography
    voxel_size =  (par_dim_vox,) * 3
    dims = mask.shape[:3]
    hdr = nib.trackvis.empty_header()
    hdr['voxel_size'] = voxel_size
    hdr['voxel_order'] = 'LAS'
    hdr['dim'] = dims
    hdr['vox_to_ras'] = affine
    strm = ((sl, None, None) for sl in streamlines)
    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_csd_tag + '_' + par_eudx_tag + '.trk'
    trk_out = os.path.join(dir_out, trk_name)
    nib.trackvis.write(trk_out, strm, hdr, points_space='voxel')    
def reconstruction(dwi,bval_file,bvec_file,mask=None,type='dti',b0=0.,order=4):
	""" Uses Dipy to reconstruct an fODF for each voxel.
	    
	    Parameters
 		----------
 	    dwi: numpy array (mandatory)
	    	Holds the diffusion weighted image in a 4D-array (see nibabel).
	    bval_file: string (mandatory)
	    	Path to the b-value file (FSL format).
	    bvec_file: string (mandatory)
	    	Path to the b-vectors file (FSL format).
	    mask:  numpy array
	    	Holds the mask in a 3D array (see nibabel).
	    type: string \in {'dti','csd','csa'} (default = 'dti')
	    	The type of the ODF reconstruction.
		b0: float (default = 0)
			Threshold to use for defining b0 images.
	    order: int (default = 4)
	    	Order to use for constrained spherical deconvolution (csd) or constant solid angle (csa).
	    	
	    Returns
		-----------
		model_fit: Dipy Object (depends on the type)
			Represents the fitted model for each voxel.
	"""	
	
	#b-values and b-vectors
	bvals, bvecs = read_bvals_bvecs(bval_file,bvec_file)
	gtab = gradient_table(bvals, bvecs, b0_threshold=b0)
	
	#reconstruction
	if type == 'dti':
		model = TensorModel(gtab,fit_method='WLS')
	elif type == 'csd':
		response, ratio = auto_response(gtab, dwi, roi_radius=10, fa_thr=0.7)
		model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=order)
	elif type == 'csa':
		model = CsaOdfModel(gtab, order)

	if mask is not None:
		model_fit = model.fit(dwi,mask=mask)
	else:
		model_fit = model.fit(dwi)
	
	return model_fit
def track(dname, fdwi, fbval, fbvec, fmask=None, seed_density = 1, show=False):
    
    data, affine = load_nifti(fdwi)
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=50)
    
    if fmask is None: 
        from dipy.segment.mask import median_otsu
        b0_mask, mask = median_otsu(data)  # TODO: check parameters to improve the mask
    else: 
        mask, mask_affine = load_nifti(fmask)
        mask = np.squeeze(mask) #fix mask dimensions 
        
    # compute DTI model
    from dipy.reconst.dti import TensorModel
    tenmodel = TensorModel(gtab)#, fit_method='OLS') #, min_signal=5000)
    
    # fit the dti model
    tenfit = tenmodel.fit(data, mask=mask)
    
    # save fa
    ffa = dname + 'tensor_fa.nii.gz'

    fa_img = nib.Nifti1Image(tenfit.fa.astype(np.float32), affine)
    nib.save(fa_img, ffa)
    
    sh_order = 8 #TODO: check what that does
    if data.shape[-1] < 15:
        raise ValueError('You need at least 15 unique DWI volumes to '
                         'compute fiber ODFs. You currently have: {0}'
                         ' DWI volumes.'.format(data.shape[-1]))
    elif data.shape[-1] < 30:
        sh_order = 6
        
    # compute the response equation ?
    from dipy.reconst.csdeconv import auto_response
    response, ratio = auto_response(gtab, data)
    response = list(response)
    
    peaks_sphere = get_sphere('symmetric362')

    #TODO: check what that does
    peaks_csd = peaks_from_model(model=tenmodel,
                                 data=data,
                                 sphere=peaks_sphere,
                                 relative_peak_threshold=.5, #.5
                                 min_separation_angle=25,
                                 mask=mask,
                                 return_sh=True,
                                 sh_order=sh_order,
                                 normalize_peaks=True,
                                 parallel=False)
    
    peaks_csd.affine = affine
    fpeaks = dname + 'peaks.npz'
    save_peaks(fpeaks, peaks_csd)
    
    from dipy.io.trackvis import save_trk
    from dipy.tracking import utils
    from dipy.tracking.local import (ThresholdTissueClassifier,
                                     LocalTracking)

    stopping_thr = 0.25   #0.25

    pam = load_peaks(fpeaks)

    #ffa = dname + 'tensor_fa_nomask.nii.gz'
    fa, fa_affine = load_nifti(ffa)

    classifier = ThresholdTissueClassifier(fa,
                                           stopping_thr)
    
    # seeds 
    

    seed_mask = fa > 0.4 #0.4 #TODO: check this parameter

    seeds = utils.seeds_from_mask(
        seed_mask,
        density=seed_density,
        affine=affine)
    
    # tractography, if affine then in world coordinates
    streamlines = LocalTracking(pam, classifier,
                                seeds, affine=affine, step_size=.5)

    # Compute streamlines and store as a list.
    streamlines = list(streamlines)

    ftractogram = dname + 'tractogram.trk'

    #save .trk
    save_trk_old_style(ftractogram, streamlines, affine, fa.shape)

    if show:
        #render
        show_results(data,streamlines, fa, fa_affine)
Exemple #14
0
    def compute_tensors(self, dti_vol, atlas_file, gtab):
        # WGR:TODO figure out how to organize tensor options and formats
        # WGR:TODO figure out how to deal with files on disk vs. in workspace
        """
        Takes registered DTI image and produces tensors

        **Positional Arguments:**

                dti_vol:
                    - Registered DTI volume, from workspace.
                atlas_file:
                    - File containing an atlas (or brain mask).
                gtab:
                    - Structure containing dipy formatted bval/bvec information
        """

        labeldata = nib.load(atlas_file)

        label = labeldata.get_data()
        """
        Create a brain mask. Here we just threshold labels.
        """

        mask = (label > 0)

        gtab.info
        print data.shape
        """
        For the constrained spherical deconvolution we need to estimate the
        response function (see :ref:`example_reconst_csd`) and create a model.
        """

        response, ratio = auto_response(gtab,
                                        dti_vol,
                                        roi_radius=10,
                                        fa_thr=0.7)

        csd_model = ConstrainedSphericalDeconvModel(gtab, response)
        """
        Next, we use ``peaks_from_model`` to fit the data and calculated
        the fiber directions in all voxels.
        """

        sphere = get_sphere('symmetric724')

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     mask=mask,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     parallel=True)
        """
        For the tracking part, we will use ``csd_model`` fiber directions
        but stop tracking where fractional anisotropy (FA) is low (< 0.1).
        To derive the FA, used as a stopping criterion, we need to fit a
        tensor model first. Here, we use weighted least squares (WLS).
        """
        print 'tensors...'

        tensor_model = TensorModel(gtab, fit_method='WLS')
        tensor_fit = tensor_model.fit(data, mask)

        FA = fractional_anisotropy(tensor_fit.evals)
        """
        In order for the stopping values to be used with our tracking
        algorithm we need to have the same dimensions as the
        ``csd_peaks.peak_values``. For this reason, we can assign the
        same FA value to every peak direction in the same voxel in
        the following way.
        """

        stopping_values = np.zeros(csd_peaks.peak_values.shape)
        stopping_values[:] = FA[..., None]
        print datetime.now() - startTime
        pass
Exemple #15
0
    def run(self, input_files, bvalues_files, bvectors_files, mask_files,
            b0_threshold=50.0, bvecs_tol=0.01, roi_center=None, roi_radius=10,
            fa_thr=0.7, frf=None, extract_pam_values=False, sh_order=8,
            odf_to_sh_order=8, parallel=False, nbr_processes=None,
            out_dir='',
            out_pam='peaks.pam5', out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz', out_gfa='gfa.nii.gz'):
        """ Constrained spherical deconvolution

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Bvecs should be unit vectors. (default:0.01)
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]` (default None)
        roi_radius : int, optional
            radius of cubic ROI in voxels (default 10)
        fa_thr : float, optional
            FA threshold for calculating the response function (default 0.7)
        frf : variable float, optional
            Fiber response function can be for example inputed as 15 4 4
            (from the command line) or [15, 4, 4] from a Python script to be
            converted to float and mutiplied by 10**-4 . If None
            the fiber response function will be computed automatically
            (default: None).
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure. Default: False
        nbr_processes : int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()).
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of
           the fibre orientation distribution in diffusion MRI: Non-negativity
           constrained super-resolved spherical deconvolution.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, opeaks_values,
             opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            print(b0_threshold, bvals.min())
            if b0_threshold < bvals.min():
                warn("b0_threshold (value: {0}) is too low, increase your "
                     "b0_threshold. It should higher than the first b0 value "
                     "({1}).".format(b0_threshold, bvals.min()))
            gtab = gradient_table(bvals, bvecs, b0_threshold=b0_threshold,
                                  atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            n_params = ((sh_order + 1) * (sh_order + 2)) / 2
            if data.shape[-1] < n_params:
                raise ValueError(
                    'You need at least {0} unique DWI volumes to '
                    'compute fiber odfs. You currently have: {1}'
                    ' DWI volumes.'.format(n_params, data.shape[-1]))

            if frf is None:
                logging.info('Computing response function')
                if roi_center is not None:
                    logging.info('Response ROI center:\n{0}'
                                 .format(roi_center))
                    logging.info('Response ROI radius:\n{0}'
                                 .format(roi_radius))
                response, ratio, nvox = auto_response(
                        gtab, data,
                        roi_center=roi_center,
                        roi_radius=roi_radius,
                        fa_thr=fa_thr,
                        return_number_of_voxels=True)
                response = list(response)

            else:
                logging.info('Using response function')
                if isinstance(frf, str):
                    l01 = np.array(literal_eval(frf), dtype=np.float64)
                else:
                    l01 = np.array(frf, dtype=np.float64)

                l01 *= 10 ** -4
                response = np.array([l01[0], l01[1], l01[1]])
                ratio = l01[1] / l01[0]
                response = (response, ratio)

            logging.info("Eigenvalues for the frf of the input"
                         " data are :{0}".format(response[0]))
            logging.info('Ratio for smallest to largest eigen value is {0}'
                         .format(ratio))

            peaks_sphere = get_sphere('repulsion724')

            logging.info('CSD computation started.')
            csd_model = ConstrainedSphericalDeconvModel(gtab, response,
                                                        sh_order=sh_order)

            peaks_csd = peaks_from_model(model=csd_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=sh_order,
                                         normalize_peaks=True,
                                         parallel=parallel,
                                         nbr_processes=nbr_processes)
            peaks_csd.affine = affine

            save_peaks(opam, peaks_csd)

            logging.info('CSD computation completed.')

            if extract_pam_values:
                peaks_to_niftis(peaks_csd, oshm, opeaks_dir, opeaks_values,
                                opeaks_indices, ogfa, reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info(
                        'Pam5 file saved in {0}'.format(dname_))

            return io_it
Exemple #16
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    response = (np.array([0.0015, 0.0003, 0.0003]), S0)

    csd = ConstrainedSphericalDeconvModel(gtab, response)

    csd_fit = csd.fit(S)

    assert_equal(csd_fit.shm_coeff[0] > 0, True)

    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len(w) > 0, False)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response(gtab, big_S, roi_center=(5, 5, 4), roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1]/response[0][0])

    aresponse2, aratio2 = auto_response(gtab, big_S, roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
Exemple #17
0
    # Loading values, vectors, image and mask
    sphere = get_sphere('symmetric362')
    print "loading bval/bvec files"
    bvals, bvecs = read_bvals_bvecs("tp3_data//bvals2000", "tp3_data//bvecs2000")
    gtab = gradient_table(bvals, bvecs)

    print "loading nifti files"
    img = nib.load("tp3_data//dwi2000.nii.gz")
    affine = img.get_affine()
    data = img.get_data()
    mask = nib.load("tp3_data//_binary_mask.nii.gz").get_data()

    ## Apply mask
    data_in_wm = applymask(data, mask)
    response, ratio = auto_response(gtab, data_in_wm)

    # Computing ODF
    print "computing fODF... please wait an hour"
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, reg_sphere=sphere)
    peaks_csd = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.25,
                                 min_separation_angle=25,
                                 mask=mask,
                                 normalize_peaks=True,
                                 parallel=True)
    # Saving files
    print "saving files"
    nib.save(nib.Nifti1Image(peaks_csd.shm_coeff.astype(np.float32), affine), "tp3_data//_fodf.nii.gz")
Exemple #18
0
    #Build Brain Mask
    bm = np.where(labels==0, False, True)
    print 'masking the brain finished'
    
    # white matter mask
    logic1 = np.logical_and(labels_>117, labels_<148)
    logic2 = np.logical_and(labels_>283, labels_<314)
    logic = np.logical_or(logic1, logic2)
    logic_ = np.logical_or(labels_==150, labels_==316)
    wm = np.where(logic, True, np.where(logic_, True, False))

    mask = wm
    
    radius = 15
    response, ratio, nvl = auto_response(gtab, data, roi_radius=radius, return_number_of_voxels=True)
    print 'We use the roi_radius={},\nand the response is {},\nthe ratio is {},\nusing {} of voxels'.format(radius, response, ratio, nvl)


    print 'fitting CSD model'
    st2 = time.time()
    sphere = get_sphere('symmetric724')
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
    csd_peaks = peaks_from_model(csd_model, data, sphere = sphere, relative_peak_threshold=0.1, min_separation_angle=25,mask=mask, return_sh=True, parallel=True, normalize_peaks=True)
    et2 = time.time() - st2
    print 'fitting CSD model finished, running time is {}'.format(et2)


    print 'seeding begins, using np.random.seed(123)'
    st3 = time.time()
    np.random.seed(123)
Exemple #19
0
data = img.get_data()
affine = img.affine
print 'loading img data finished'

#load bvals and bvecs data
bvals = np.loadtxt(mypath+'N54917_RAS_ecc_bvals.txt')
bvecs = np.loadtxt(mypath+'N54917_RAS_ecc_bvecs.txt')
gtab = gradient_table(bvals, bvecs)





#aoto response function in the whole brain
from dipy.reconst.csdeconv import auto_response
response1, ratio1, nvoxel = auto_response(gtab, data, roi_radius=30, fa_thr=0.7, 
                                       roi_center=None, return_number_of_voxels=True)
print  'ratio1'
print ratio1
print response1

# In[ ]:


#recursive response function
from dipy.reconst.csdeconv import recursive_response
#logic1 = np.logical_and(labels>117, labels<148)
#logic2 = np.logical_and(labels>283, labels<314)
#logic = np.logical_or(logic1, logic2)
#logic_ = np.logical_or(labels==150, labels==316)
#wm = np.where(logic, 1, np.where(logic_, 1, 0))
	def _run_interface(self, runtime):
		import numpy as np
		import nibabel as nib
		from dipy.io import read_bvals_bvecs
		from dipy.core.gradients import gradient_table
		from nipype.utils.filemanip import split_filename

		# Loading the data
		fname = self.inputs.in_file
		img = nib.load(fname)
		data = img.get_data()
		affine = img.get_affine()

		FA_fname = self.inputs.FA_file
		FA_img = nib.load(FA_fname)
		fa = FA_img.get_data()
		affine = FA_img.get_affine()
		affine = np.matrix.round(affine)

		mask_fname = self.inputs.brain_mask
		mask_img = nib.load(mask_fname)
		mask = mask_img.get_data()

		bval_fname = self.inputs.bval
		bvals = np.loadtxt(bval_fname)

		bvec_fname = self.inputs.bvec
		bvecs = np.loadtxt(bvec_fname)
		bvecs = np.vstack([bvecs[0,:],bvecs[1,:],bvecs[2,:]]).T
		gtab = gradient_table(bvals, bvecs)

		# Creating a white matter mask
		fa = fa*mask
		white_matter = fa >= 0.2

		# Creating a seed mask
		from dipy.tracking import utils
		seeds = utils.seeds_from_mask(white_matter, density=[2, 2, 2], affine=affine)

		# Fitting the CSA model
		from dipy.reconst.shm import CsaOdfModel
		from dipy.data import default_sphere
		from dipy.direction import peaks_from_model
		csa_model = CsaOdfModel(gtab, sh_order=8)
		csa_peaks = peaks_from_model(csa_model, data, default_sphere,
		                             relative_peak_threshold=.8,
		                             min_separation_angle=45,
		                             mask=white_matter)

		from dipy.tracking.local import ThresholdTissueClassifier
		classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)

		# CSD model
		from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response)
		response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
		csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
		csd_fit = csd_model.fit(data, mask=white_matter)

		from dipy.direction import ProbabilisticDirectionGetter
		prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
		                                                    max_angle=45.,
		                                                    sphere=default_sphere)

		# Tracking
		from dipy.tracking.local import LocalTracking
		streamlines = LocalTracking(prob_dg, classifier, seeds, affine,
		                            step_size=.5, maxlen=200, max_cross=1)

		# Compute streamlines and store as a list.
		streamlines = list(streamlines)

		# Saving the trackfile
		from dipy.io.trackvis import save_trk
		_, base, _ = split_filename(fname)
		save_trk(base + '_CSDprob.trk', streamlines, affine, fa.shape)

		return runtime
Exemple #21
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')

    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])

    response = (np.array([0.0015, 0.0003, 0.0003]), S0)

    csd = ConstrainedSphericalDeconvModel(gtab, response)

    csd_fit = csd.fit(S)

    assert_equal(csd_fit.shm_coeff[0] > 0, True)

    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_equal(len(w) > 0, True)

    with warnings.catch_warnings(record=True) as w:

        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len(w) > 0, False)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response(gtab, big_S, roi_center=(5, 5, 4), roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1]/response[0][0])

    aresponse2, aratio2 = auto_response(gtab, big_S, roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
Exemple #22
0
def tracking(folder):
    print('Tracking in ' + folder)
    output_folder = folder + 'dipy_out/'

    # make a folder to save new data into
    try:
        Path(output_folder).mkdir(parents=True, exist_ok=True)
    except OSError:
        print('Could not create output dir. Aborting...')
        return

    # load data
    print('Loading data...')
    img = nib.load(folder + 'data.nii.gz')
    dmri = np.asarray(img.dataobj)
    affine = img.affine
    mask, _ = load_nifti(folder + 'nodif_brain_mask.nii.gz')
    bvals, bvecs = read_bvals_bvecs(folder + 'bvals', folder + 'bvecs')
    gtab = gradient_table(bvals, bvecs)

    # extract peaksoutput_folder + 'peak_vals.nii.gz'
    if Path(output_folder + 'peaks.pam5').exists():
        peaks = load_peaks(output_folder + 'peaks.pam5')
    else:
        print('Extracting peaks...')
        response, ration = auto_response(gtab, dmri, roi_radius=10, fa_thr=.7)
        csd_model = ConstrainedSphericalDeconvModel(gtab, response)

        peaks = peaks_from_model(model=csd_model,
                                 data=dmri,
                                 sphere=default_sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=True)

        save_peaks(output_folder + 'peaks.pam5', peaks, affine)
        scaled = peaks.peak_dirs * np.repeat(
            np.expand_dims(peaks.peak_values, -1), 3, -1)

        cropped = scaled[:, :, :, :3, :].reshape(dmri.shape[:3] + (9, ))
        save_nifti(output_folder + 'peaks.nii.gz', cropped, affine)
        #save_nifti(output_folder + 'peak_dirs.nii.gz', peaks.peak_dirs, affine)
        #save_nifti(output_folder + 'peak_vals.nii.gz', peaks.peak_values, affine)

    # tracking
    print('Tracking...')
    maskdata, mask = median_otsu(dmri,
                                 vol_idx=range(0, dmri.shape[3]),
                                 median_radius=3,
                                 numpass=1,
                                 autocrop=True,
                                 dilate=2)
    tensor_model = TensorModel(gtab, fit_method='WLS')
    tensor_fit = tensor_model.fit(maskdata)
    fa = fractional_anisotropy(tensor_fit.evals)
    fa[np.isnan(fa)] = 0
    bla = np.average(fa)
    tissue_classifier = ThresholdStoppingCriterion(fa, .1)
    seeds = random_seeds_from_mask(fa > 1e-5, affine, seeds_count=1)

    streamline_generator = LocalTracking(direction_getter=peaks,
                                         stopping_criterion=tissue_classifier,
                                         seeds=seeds,
                                         affine=affine,
                                         step_size=.5)
    streamlines = Streamlines(streamline_generator)
    save_trk(StatefulTractogram(streamlines, img, Space.RASMM),
             output_folder + 'whole_brain.trk')
def dmri_recon(sid,
               data_dir,
               out_dir,
               resolution,
               recon='csd',
               dirs='',
               num_threads=2):
    import tempfile
    #tempfile.tempdir = '/om/scratch/Fri/ksitek/'

    import os
    oldval = None
    if 'MKL_NUM_THREADS' in os.environ:
        oldval = os.environ['MKL_NUM_THREADS']
    os.environ['MKL_NUM_THREADS'] = '%d' % num_threads
    ompoldval = None
    if 'OMP_NUM_THREADS' in os.environ:
        ompoldval = os.environ['OMP_NUM_THREADS']
    os.environ['OMP_NUM_THREADS'] = '%d' % num_threads
    import nibabel as nib
    import numpy as np
    from glob import glob

    if resolution == '0.2mm':
        filename = 'Reg_S64550_nii4d.nii'
        #filename = 'angular_resample/dwi_%s.nii.gz'%dirs
        fimg = os.path.abspath(glob(os.path.join(data_dir, filename))[0])
    else:
        filename = 'Reg_S64550_nii4d_resamp-%s.nii.gz' % (resolution)
        fimg = os.path.abspath(
            glob(os.path.join(data_dir, 'resample', filename))[0])
    print("dwi file = %s" % fimg)
    fbval = os.path.abspath(
        glob(os.path.join(data_dir, 'bvecs', 'camino_120_RAS.bvals'))[0])
    print("bval file = %s" % fbval)
    fbvec = os.path.abspath(
        glob(os.path.join(data_dir, 'bvecs',
                          'camino_120_RAS_flipped-xy.bvecs'))[0])
    #                                          'angular_resample',
    #                                          'dwi_%s.bvecs'%dirs))[0])
    print("bvec file = %s" % fbvec)
    img = nib.load(fimg)
    data = img.get_fdata()

    affine = img.get_affine()

    prefix = sid

    from dipy.io import read_bvals_bvecs
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    '''
    from dipy.core.gradients import vector_norm
    b0idx = []
    for idx, val in enumerate(bvals):
        if val < 1:
            pass
            #bvecs[idx] = [1, 0, 0]
        else:
            b0idx.append(idx)
            #print "b0idx=%d"%idx
    #print "input bvecs:"
    #print bvecs
    bvecs[b0idx, :] = bvecs[b0idx, :]/vector_norm(bvecs[b0idx])[:, None]
    #print "bvecs after normalization:"
    #print bvecs
    '''

    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)
    gtab.bvecs.shape == bvecs.shape
    gtab.bvecs
    gtab.bvals.shape == bvals.shape
    gtab.bvals

    #from dipy.segment.mask import median_otsu
    #b0_mask, mask = median_otsu(data[:, :, :, b0idx].mean(axis=3).squeeze(), 4, 4)

    if resolution == '0.2mm':
        mask_name = 'Reg_S64550_nii_b0-slice_mask.nii.gz'
        fmask1 = os.path.join(data_dir, mask_name)
    else:
        mask_name = 'Reg_S64550_nii_b0-slice_mask_resamp-%s.nii.gz' % (
            resolution)
        fmask1 = os.path.join(data_dir, 'resample', mask_name)
    print("fmask file = %s" % fmask1)
    mask = nib.load(fmask1).get_fdata()
    ''' DTI model & save metrics '''
    from dipy.reconst.dti import TensorModel
    print("running tensor model")
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)

    from dipy.reconst.dti import fractional_anisotropy
    print("running FA")
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    fa_img = nib.Nifti1Image(FA, img.get_affine())
    tensor_fa_file = os.path.abspath('%s_tensor_fa.nii.gz' % (prefix))
    nib.save(fa_img, tensor_fa_file)

    from dipy.reconst.dti import axial_diffusivity
    print("running AD")
    AD = axial_diffusivity(tenfit.evals)
    AD[np.isnan(AD)] = 0
    ad_img = nib.Nifti1Image(AD, img.get_affine())
    tensor_ad_file = os.path.abspath('%s_tensor_ad.nii.gz' % (prefix))
    nib.save(ad_img, tensor_ad_file)

    from dipy.reconst.dti import radial_diffusivity
    print("running RD")
    RD = radial_diffusivity(tenfit.evals)
    RD[np.isnan(RD)] = 0
    rd_img = nib.Nifti1Image(RD, img.get_affine())
    tensor_rd_file = os.path.abspath('%s_tensor_rd.nii.gz' % (prefix))
    nib.save(rd_img, tensor_rd_file)

    from dipy.reconst.dti import mean_diffusivity
    print("running MD")
    MD = mean_diffusivity(tenfit.evals)
    MD[np.isnan(MD)] = 0
    md_img = nib.Nifti1Image(MD, img.get_affine())
    tensor_md_file = os.path.abspath('%s_tensor_md.nii.gz' % (prefix))
    nib.save(md_img, tensor_md_file)

    evecs = tenfit.evecs
    evec_img = nib.Nifti1Image(evecs, img.get_affine())
    tensor_evec_file = os.path.abspath('%s_tensor_evec.nii.gz' % (prefix))
    nib.save(evec_img, tensor_evec_file)
    ''' ODF model '''
    useFA = True
    print("creating %s model" % recon)
    if recon == 'csd':
        from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
        from dipy.reconst.csdeconv import auto_response
        response, ratio = auto_response(gtab, data, roi_radius=10,
                                        fa_thr=0.5)  # 0.7

        model = ConstrainedSphericalDeconvModel(gtab, response)
        useFA = True
        return_sh = True
    elif recon == 'csa':
        from dipy.reconst.shm import CsaOdfModel, normalize_data
        model = CsaOdfModel(gtab, sh_order=8)
        useFA = True
        return_sh = True
    elif recon == 'gqi':
        from dipy.reconst.gqi import GeneralizedQSamplingModel
        model = GeneralizedQSamplingModel(gtab)
        return_sh = False
    else:
        raise ValueError('only csd, csa supported currently')
        from dipy.reconst.dsi import (DiffusionSpectrumDeconvModel,
                                      DiffusionSpectrumModel)
        model = DiffusionSpectrumDeconvModel(gtab)
    '''reconstruct ODFs'''
    from dipy.data import get_sphere
    sphere = get_sphere('symmetric724')
    #odfs = fit.odf(sphere)

    # with CSD/GQI, uses > 50GB per core; don't get greedy with cores!
    from dipy.reconst.peaks import peaks_from_model
    print("running peaks_from_model")
    peaks = peaks_from_model(
        model=model,
        data=data,
        sphere=sphere,
        mask=mask,
        return_sh=return_sh,
        return_odf=False,
        normalize_peaks=True,
        npeaks=5,
        relative_peak_threshold=.5,
        min_separation_angle=10,  #25,
        parallel=num_threads > 1,
        nbr_processes=num_threads)

    # save the peaks
    from dipy.io.peaks import save_peaks
    peaks_file = os.path.abspath('%s_peaks.pam5' % (prefix))
    save_peaks(peaks_file, peaks)

    # save the spherical harmonics
    shm_coeff_file = os.path.abspath('%s_shm_coeff.nii.gz' % (prefix))
    if return_sh:
        shm_coeff = peaks.shm_coeff
        nib.save(nib.Nifti1Image(shm_coeff, img.get_affine()), shm_coeff_file)
    else:
        # if it's not a spherical model, output it as an essentially null file
        np.savetxt(shm_coeff_file, [0])

    # save the generalized fractional anisotropy image
    gfa_img = nib.Nifti1Image(peaks.gfa, img.get_affine())
    model_gfa_file = os.path.abspath('%s_%s_gfa.nii.gz' % (prefix, recon))
    nib.save(gfa_img, model_gfa_file)

    #from dipy.reconst.dti import quantize_evecs
    #peak_indices = quantize_evecs(tenfit.evecs, sphere.vertices)
    #eu = EuDX(FA, peak_indices, odf_vertices = sphere.vertices,
    #a_low=0.2, seeds=10**6, ang_thr=35)
    ''' probabilistic tracking '''
    '''
    from dipy.direction import ProbabilisticDirectionGetter
    from dipy.tracking.local import LocalTracking
    from dipy.tracking.streamline import Streamlines
    from dipy.io.streamline import save_trk

    prob_dg = ProbabilisticDirectionGetter.from_shcoeff(shm_coeff,
                                                        max_angle=45.,
                                                        sphere=sphere)
    streamlines_generator = LocalTracking(prob_dg,
                                          affine,
                                          step_size=.5,
                                          max_cross=1)

    # Generate streamlines object
    streamlines = Streamlines(streamlines_generator)

    affine = img.get_affine()
    vox_size=fa_img.get_header().get_zooms()[:3]

    fname = os.path.abspath('%s_%s_prob_streamline.trk' % (prefix, recon))
    save_trk(fname, streamlines, affine, vox_size=vox_size)
    '''
    ''' deterministic tracking with EuDX method'''
    from dipy.tracking.eudx import EuDX
    print("reconstructing with EuDX")
    if useFA:
        eu = EuDX(
            FA,
            peaks.peak_indices[..., 0],
            odf_vertices=sphere.vertices,
            a_low=0.001,  # default is 0.0239
            seeds=10**6,
            ang_thr=75)
    else:
        eu = EuDX(
            peaks.gfa,
            peaks.peak_indices[..., 0],
            odf_vertices=sphere.vertices,
            #a_low=0.1,
            seeds=10**6,
            ang_thr=45)

    sl_fname = os.path.abspath('%s_%s_det_streamline.trk' % (prefix, recon))

    # trying new dipy.io.streamline module, per email to neuroimaging list
    # 2018.04.05
    from nibabel.streamlines import Field
    from nibabel.orientations import aff2axcodes
    affine = img.get_affine()
    vox_size = fa_img.get_header().get_zooms()[:3]
    fov_shape = FA.shape[:3]

    if vox_size is not None and fov_shape is not None:
        hdr = {}
        hdr[Field.VOXEL_TO_RASMM] = affine.copy()
        hdr[Field.VOXEL_SIZES] = vox_size
        hdr[Field.DIMENSIONS] = fov_shape
        hdr[Field.VOXEL_ORDER] = "".join(aff2axcodes(affine))

    tractogram = nib.streamlines.Tractogram(eu)
    tractogram.affine_to_rasmm = affine
    trk_file = nib.streamlines.TrkFile(tractogram, header=hdr)
    nib.streamlines.save(trk_file, sl_fname)

    if oldval:
        os.environ['MKL_NUM_THREADS'] = oldval
    else:
        del os.environ['MKL_NUM_THREADS']
    if ompoldval:
        os.environ['OMP_NUM_THREADS'] = ompoldval
    else:
        del os.environ['OMP_NUM_THREADS']

    print('all output files created')

    return (tensor_fa_file, tensor_evec_file, model_gfa_file, sl_fname, affine,
            tensor_ad_file, tensor_rd_file, tensor_md_file, shm_coeff_file,
            peaks_file)
Exemple #24
0
def compute_ssst_frf(data, bvals, bvecs, mask=None, mask_wm=None,
                     fa_thresh=0.7, min_fa_thresh=0.5, min_nvox=300,
                     roi_radius=10, roi_center=None, force_b0_threshold=False):
    """Compute a single-shell (under b=1500), single-tissue single Fiber
    Response Function from a DWI volume.
    A DTI fit is made, and voxels containing a single fiber population are
    found using a threshold on the FA.

    Parameters
    ----------
    data : ndarray
        4D Input diffusion volume with shape (X, Y, Z, N)
    bvals : ndarray
        1D bvals array with shape (N,)
    bvecs : ndarray
        2D bvecs array with shape (N, 3)
    mask : ndarray, optional
        3D mask with shape (X,Y,Z)
        Binary mask. Only the data inside the mask will be used for
        computations and reconstruction. Useful if no white matter mask is
        available.
    mask_wm : ndarray, optional
        3D mask with shape (X,Y,Z)
        Binary white matter mask. Only the data inside this mask and above the
        threshold defined by fa_thresh will be used to estimate the fiber
        response function.
    fa_thresh : float, optional
        Use this threshold as the initial threshold to select single fiber
        voxels. Defaults to 0.7
    min_fa_thresh : float, optional
        Minimal value that will be tried when looking for single fiber voxels.
        Defaults to 0.5
    min_nvox : int, optional
        Minimal number of voxels needing to be identified as single fiber
        voxels in the automatic estimation. Defaults to 300.
    roi_radius : int, optional
        Use this radius to select single fibers from the tensor to estimate
        the FRF. The roi will be a cube spanning from the middle of the volume
        in each direction. Defaults to 10.
    roi_center : tuple(3), optional
        Use this center to span the roi of size roi_radius (center of the
        3D volume).
    force_b0_threshold : bool, optional
        If set, will continue even if the minimum bvalue is suspiciously high.

    Returns
    -------
    full_reponse : ndarray
        Fiber Response Function, with shape (4,)

    Raises
    ------
    ValueError
        If less than `min_nvox` voxels were found with sufficient FA to
        estimate the FRF.
    """
    if min_fa_thresh < 0.4:
        logging.warning(
            "Minimal FA threshold ({:.2f}) seems really small. "
            "Make sure it makes sense for this dataset.".format(min_fa_thresh))

    if not is_normalized_bvecs(bvecs):
        logging.warning("Your b-vectors do not seem normalized...")
        bvecs = normalize_bvecs(bvecs)

    check_b0_threshold(force_b0_threshold, bvals.min())

    gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())

    if mask is not None:
        data = applymask(data, mask)

    if mask_wm is not None:
        data = applymask(data, mask_wm)
    else:
        logging.warning(
            "No white matter mask specified! Only mask will be used "
            "(if it has been supplied). \nBe *VERY* careful about the "
            "estimation of the fiber response function to ensure no invalid "
            "voxel was used.")

    # Iteratively trying to fit at least min_nvox voxels. Lower the FA threshold
    # when it doesn't work. Fail if the fa threshold is smaller than
    # the min_threshold.
    # We use an epsilon since the -= 0.05 might incur numerical imprecision.
    nvox = 0
    while nvox < min_nvox and fa_thresh >= min_fa_thresh - 0.00001:
        response, ratio, nvox = auto_response(gtab, data,
                                              roi_center=roi_center,
                                              roi_radius=roi_radius,
                                              fa_thr=fa_thresh,
                                              return_number_of_voxels=True)

        logging.debug(
            "Number of indices is {:d} with threshold of {:.2f}".format(
                nvox, fa_thresh))
        fa_thresh -= 0.05

    if nvox < min_nvox:
        raise ValueError(
            "Could not find at least {:d} voxels with sufficient FA "
            "to estimate the FRF!".format(min_nvox))

    logging.debug(
        "Found {:d} voxels with FA threshold {:.2f} for "
        "FRF estimation".format(nvox, fa_thresh + 0.05))
    logging.debug("FRF eigenvalues: {}".format(str(response[0])))
    logging.debug("Ratio for smallest to largest eigen value "
                  "is {:.3f}".format(ratio))
    logging.debug("Mean of the b=0 signal for voxels used "
                  "for FRF: {}".format(response[1]))

    full_response = np.array([response[0][0], response[0][1],
                              response[0][2], response[1]])

    return full_response
ten_img = ten_img[:, :, :, (0, 1, 3, 2, 4, 5)]
array_img = nib.Nifti1Image(ten_img, affine)
nib.save(array_img, dav_dir + 'TN_img.nii.gz')

# estimating fiber response from corpus callosum

cc_label = 48
cc_pixels = np.where(pr_img == cc_label)
cc_x_min, cc_x_max, cc_y_min, cc_y_max, cc_z_min, cc_z_max= \
        cc_pixels[0].min(), cc_pixels[0].max(), cc_pixels[1].min(), cc_pixels[1].max(), cc_pixels[2].min(), cc_pixels[2].max()

slc = (cc_z_min + cc_z_max) // 2

response, ratio = auto_response(gtab,
                                d_img[cc_x_min:cc_x_max, cc_y_min:cc_y_max,
                                      cc_z_min:cc_z_max, :],
                                roi_radius=300,
                                fa_thr=0.7)

#  choose the b=1000 shell

ind_0_1000 = np.logical_or(b_vals == 0, b_vals == 1000)
d_img_0_1000 = d_img[:, :, :, ind_0_1000].copy()
b_vecs_0_1000 = b_vecs[:, ind_0_1000]
b_vals_0_1000 = b_vals[ind_0_1000]
gtab_0_1000 = gradient_table(b_vals_0_1000, b_vecs_0_1000)

response_0_1000, ratio_0_1000 = auto_response(
    gtab_0_1000,
    d_img_0_1000[cc_x_min:cc_x_max, cc_y_min:cc_y_max, cc_z_min:cc_z_max, :],
    roi_radius=300,
Exemple #26
0
    def eudx_advanced(self,
                      dti_file,
                      mask_file,
                      gtab,
                      seed_num=100000,
                      stop_val=0.1):
        """
        Tracking with more complex tensors - experimental

        Initializes the graph with nodes corresponding to the number of ROIs

        **Positional Arguments:**

                dti_file:
                    - File (registered) to use for tensor/fiber tracking
                mask_file:
                    - Brain mask to keep tensors inside the brain
                gtab:
                    - dipy formatted bval/bvec Structure

        **Optional Arguments:**
                seed_num:
                    - Number of seeds to use for fiber tracking
                stop_val:
                    - Value to cutoff fiber track
        """

        img = nb.load(dti_file)
        data = img.get_data()

        img = nb.load(mask_file)

        mask = img.get_data()
        mask = mask > 0  # to ensure binary mask
        """
        For the constrained spherical deconvolution we need to estimate the
        response function (see :ref:`example_reconst_csd`) and create a model.
        """

        response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

        csd_model = ConstrainedSphericalDeconvModel(gtab, response)
        """
        Next, we use ``peaks_from_model`` to fit the data and calculated
        the fiber directions in all voxels.
        """

        sphere = get_sphere('symmetric724')

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     mask=mask,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     parallel=True)
        """
        For the tracking part, we will use ``csd_model`` fiber directions
        but stop tracking where fractional anisotropy (FA) is low (< 0.1).
        To derive the FA, used as a stopping criterion, we need to fit a
        tensor model first. Here, we use weighted least squares (WLS).
        """
        print 'tensors...'

        tensor_model = TensorModel(gtab, fit_method='WLS')
        tensor_fit = tensor_model.fit(data, mask)

        FA = fractional_anisotropy(tensor_fit.evals)
        """
        In order for the stopping values to be used with our tracking
        algorithm we need to have the same dimensions as the
        ``csd_peaks.peak_values``. For this reason, we can assign the
        same FA value to every peak direction in the same voxel in
        the following way.
        """

        stopping_values = np.zeros(csd_peaks.peak_values.shape)
        stopping_values[:] = FA[..., None]

        streamline_generator = EuDX(stopping_values,
                                    csd_peaks.peak_indices,
                                    seeds=seed_num,
                                    odf_vertices=sphere.vertices,
                                    a_low=stop_val)

        streamlines = [streamline for streamline in streamline_generator]

        return streamlines
Exemple #27
0
    def compute_tensors(self, dti_vol, atlas_file, gtab):
        # WGR:TODO figure out how to organize tensor options and formats
        # WGR:TODO figure out how to deal with files on disk vs. in workspace
        """
        Takes registered DTI image and produces tensors

        **Positional Arguments:**

                dti_vol:
                    - Registered DTI volume, from workspace.
                atlas_file:
                    - File containing an atlas (or brain mask).
                gtab:
                    - Structure containing dipy formatted bval/bvec information
        """

        labeldata = nib.load(atlas_file)

        label = labeldata.get_data()

        """
        Create a brain mask. Here we just threshold labels.
        """

        mask = (label > 0)

        gtab.info
        print data.shape
        """
        For the constrained spherical deconvolution we need to estimate the
        response function (see :ref:`example_reconst_csd`) and create a model.
        """

        response, ratio = auto_response(gtab, dti_vol, roi_radius=10,
                                        fa_thr=0.7)

        csd_model = ConstrainedSphericalDeconvModel(gtab, response)

        """
        Next, we use ``peaks_from_model`` to fit the data and calculated
        the fiber directions in all voxels.
        """

        sphere = get_sphere('symmetric724')

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     mask=mask,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     parallel=True)

        """
        For the tracking part, we will use ``csd_model`` fiber directions
        but stop tracking where fractional anisotropy (FA) is low (< 0.1).
        To derive the FA, used as a stopping criterion, we need to fit a
        tensor model first. Here, we use weighted least squares (WLS).
        """
        print 'tensors...'

        tensor_model = TensorModel(gtab, fit_method='WLS')
        tensor_fit = tensor_model.fit(data, mask)

        FA = fractional_anisotropy(tensor_fit.evals)

        """
        In order for the stopping values to be used with our tracking
        algorithm we need to have the same dimensions as the
        ``csd_peaks.peak_values``. For this reason, we can assign the
        same FA value to every peak direction in the same voxel in
        the following way.
        """

        stopping_values = np.zeros(csd_peaks.peak_values.shape)
        stopping_values[:] = FA[..., None]
        print datetime.now() - startTime
        pass
Exemple #28
0
    def _run_interface(self, runtime):
        from dipy.core.gradients import GradientTable
        from dipy.reconst.dti import fractional_anisotropy, mean_diffusivity
        from dipy.reconst.csdeconv import recursive_response, auto_response

        img = nb.load(self.inputs.in_file)
        imref = nb.four_to_three(img)[0]
        affine = img.affine

        if isdefined(self.inputs.in_mask):
            msk = nb.load(self.inputs.in_mask).get_data()
            msk[msk > 0] = 1
            msk[msk < 0] = 0
        else:
            msk = np.ones(imref.shape)

        data = img.get_data().astype(np.float32)
        gtab = self._get_gradient_table()

        evals = np.nan_to_num(nb.load(self.inputs.in_evals).get_data())
        FA = np.nan_to_num(fractional_anisotropy(evals)) * msk
        indices = np.where(FA > self.inputs.fa_thresh)
        S0s = data[indices][:, np.nonzero(gtab.b0s_mask)[0]]
        S0 = np.mean(S0s)

        if self.inputs.auto:
            response, ratio = auto_response(gtab,
                                            data,
                                            roi_radius=self.inputs.roi_radius,
                                            fa_thr=self.inputs.fa_thresh)
            response = response[0].tolist() + [S0]
        elif self.inputs.recursive:
            MD = np.nan_to_num(mean_diffusivity(evals)) * msk
            indices = np.logical_or(FA >= 0.4,
                                    (np.logical_and(FA >= 0.15, MD >= 0.0011)))
            data = nb.load(self.inputs.in_file).get_data()
            response = recursive_response(gtab,
                                          data,
                                          mask=indices,
                                          sh_order=8,
                                          peak_thr=0.01,
                                          init_fa=0.08,
                                          init_trace=0.0021,
                                          iter=8,
                                          convergence=0.001,
                                          parallel=True)
            ratio = abs(response[1] / response[0])
        else:
            lambdas = evals[indices]
            l01 = np.sort(np.mean(lambdas, axis=0))

            response = np.array([l01[-1], l01[-2], l01[-2], S0])
            ratio = abs(response[1] / response[0])

        if ratio > 0.25:
            IFLOGGER.warn(
                'Estimated response is not prolate enough. '
                'Ratio=%0.3f.', ratio)
        elif ratio < 1.e-5 or np.any(np.isnan(response)):
            response = np.array([1.8e-3, 3.6e-4, 3.6e-4, S0])
            IFLOGGER.warn(
                'Estimated response is not valid, using a default one')
        else:
            IFLOGGER.info('Estimated response: %s', str(response[:3]))

        np.savetxt(op.abspath(self.inputs.response), response)

        wm_mask = np.zeros_like(FA)
        wm_mask[indices] = 1
        nb.Nifti1Image(wm_mask.astype(np.uint8), affine,
                       None).to_filename(op.abspath(self.inputs.out_mask))
        return runtime
Exemple #29
0
    def eudx_advanced(self, dti_file, mask_file, gtab,
                      seed_num=100000, stop_val=0.1):
        """
        Tracking with more complex tensors - experimental

        Initializes the graph with nodes corresponding to the number of ROIs

        **Positional Arguments:**

                dti_file:
                    - File (registered) to use for tensor/fiber tracking
                mask_file:
                    - Brain mask to keep tensors inside the brain
                gtab:
                    - dipy formatted bval/bvec Structure

        **Optional Arguments:**
                seed_num:
                    - Number of seeds to use for fiber tracking
                stop_val:
                    - Value to cutoff fiber track
        """

        img = nb.load(dti_file)
        data = img.get_data()

        img = nb.load(mask_file)

        mask = img.get_data()
        mask = mask > 0  # to ensure binary mask

        """
        For the constrained spherical deconvolution we need to estimate the
        response function (see :ref:`example_reconst_csd`) and create a model.
        """

        response, ratio = auto_response(gtab, data, roi_radius=10,
                                        fa_thr=0.7)

        csd_model = ConstrainedSphericalDeconvModel(gtab, response)

        """
        Next, we use ``peaks_from_model`` to fit the data and calculated
        the fiber directions in all voxels.
        """

        sphere = get_sphere('symmetric724')

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     mask=mask,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     parallel=True)

        """
        For the tracking part, we will use ``csd_model`` fiber directions
        but stop tracking where fractional anisotropy (FA) is low (< 0.1).
        To derive the FA, used as a stopping criterion, we need to fit a
        tensor model first. Here, we use weighted least squares (WLS).
        """
        print 'tensors...'

        tensor_model = TensorModel(gtab, fit_method='WLS')
        tensor_fit = tensor_model.fit(data, mask)

        FA = fractional_anisotropy(tensor_fit.evals)

        """
        In order for the stopping values to be used with our tracking
        algorithm we need to have the same dimensions as the
        ``csd_peaks.peak_values``. For this reason, we can assign the
        same FA value to every peak direction in the same voxel in
        the following way.
        """

        stopping_values = np.zeros(csd_peaks.peak_values.shape)
        stopping_values[:] = FA[..., None]

        streamline_generator = EuDX(stopping_values,
                                    csd_peaks.peak_indices,
                                    seeds=seed_num,
                                    odf_vertices=sphere.vertices,
                                    a_low=stop_val)

        streamlines = [streamline for streamline in streamline_generator]

        return streamlines
Constrained Spherical Deconvolution (CSD) Model. This model represents each
voxel in the data set as a collection of small white matter fibers with
different orientations. The density of fibers along each orientation is known
as the Fiber Orientation Distribution (FOD). In order to perform probabilistic
fiber tracking, we pick a fiber from the FOD at random at each new location
along the streamline. Note: one could use this model to perform deterministic
fiber tracking by always tracking along the directions that have the most
fibers.

Let's begin probabilistic fiber tracking by fitting the data to the CSD model.
"""

from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel,
                                   auto_response)

response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
csd_fit = csd_model.fit(data, mask=white_matter)

"""
Next we'll need to make a ``ProbabilisticDirectionGetter``. Because the CSD
model represents the FOD using the spherical harmonic basis, we can use the
``from_shcoeff`` method to create the direction getter. This direction getter
will randomly sample directions from the FOD each time the tracking algorithm
needs to take another step.
"""

from dipy.direction import ProbabilisticDirectionGetter

prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                                    max_angle=30.,
Exemple #31
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()
    logging.basicConfig(level=logging.INFO)

    if not args.not_all:
        args.fodf = args.fodf or 'fodf.nii.gz'
        args.peaks = args.peaks or 'peaks.nii.gz'
        args.peak_indices = args.peak_indices or 'peak_indices.nii.gz'

    arglist = [args.fodf, args.peaks, args.peak_indices]
    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least '
                     'one file to output.')

    assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs])
    assert_outputs_exists(parser, args, arglist)

    nbr_processes = args.nbr_processes
    parallel = True
    if nbr_processes <= 0:
        nbr_processes = None
    elif nbr_processes == 1:
        parallel = False

    # Check for FRF filename
    base_odf_name, _ = split_name_with_nii(args.fodf)
    frf_filename = base_odf_name + '_frf.txt'
    if os.path.isfile(frf_filename) and not args.overwrite:
        parser.error('Cannot save frf file, "{0}" already exists. '
                     'Use -f to overwrite.'.format(frf_filename))

    vol = nib.load(args.input)
    data = vol.get_data()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if args.mask_wm is not None:
        wm_mask = nib.load(args.mask_wm).get_data().astype('bool')
    else:
        wm_mask = np.ones_like(data[..., 0], dtype=np.bool)
        logging.info(
            'No white matter mask specified! mask_data will be used instead, '
            'if it has been supplied. \nBe *VERY* careful about the '
            'estimation of the fiber response function for the CSD.')

    data_in_wm = applymask(data, wm_mask)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    if bvals.min() != 0:
        if bvals.min() > 20:
            raise ValueError(
                'The minimal bvalue is greater than 20. This is highly '
                'suspicious. Please check your data to ensure everything is '
                'correct.\nValue found: {}'.format(bvals.min()))
        else:
            logging.warning(
                'Warning: no b=0 image. Setting b0_threshold to '
                'bvals.min() = %s', bvals.min())
            gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())
    else:
        gtab = gradient_table(bvals, bvecs)

    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    # Raise warning for sh order if there is not enough DWIs
    if data.shape[-1] < (args.sh_order + 1) * (args.sh_order + 2) / 2:
        warnings.warn(
            'We recommend having at least %s unique DWIs volumes, but you '
            'currently have %s volumes. Try lowering the parameter --sh_order '
            'in case of non convergence.',
            (args.sh_order + 1) * (args.sh_order + 2) / 2), data.shape[-1]
    fa_thresh = args.fa_thresh

    # If threshold is too high, try lower until enough indices are found
    # estimating a response function with fa < 0.5 does not make sense
    nvox = 0
    while nvox < 300 and fa_thresh > 0.5:
        response, ratio, nvox = auto_response(gtab,
                                              data_in_wm,
                                              roi_center=args.roi_center,
                                              roi_radius=args.roi_radius,
                                              fa_thr=fa_thresh,
                                              return_number_of_voxels=True)

        logging.info('Number of indices is %s with threshold of %s', nvox,
                     fa_thresh)
        fa_thresh -= 0.05

        if fa_thresh <= 0:
            raise ValueError(
                'Could not find at least 300 voxels for estimating the frf!')

    logging.info('Found %s valid voxels for frf estimation.', nvox)

    response = list(response)
    logging.info('Response function is %s', response)

    if args.frf is not None:
        l01 = np.array(literal_eval(args.frf), dtype=np.float64)
        if not args.no_factor:
            l01 *= 10**-4

        response[0] = np.array([l01[0], l01[1], l01[1]])
        ratio = l01[1] / l01[0]

    logging.info("Eigenvalues for the frf of the input data are: %s",
                 response[0])
    logging.info("Ratio for smallest to largest eigen value is %s", ratio)
    np.savetxt(frf_filename, response[0])

    if not args.frf_only:
        reg_sphere = get_sphere('symmetric362')
        peaks_sphere = get_sphere('symmetric724')

        csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                    response,
                                                    reg_sphere=reg_sphere,
                                                    sh_order=args.sh_order)

        peaks_csd = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=peaks_sphere,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     mask=mask,
                                     return_sh=True,
                                     sh_basis_type=args.basis,
                                     sh_order=args.sh_order,
                                     normalize_peaks=True,
                                     parallel=parallel,
                                     nbr_processes=nbr_processes)

        if args.fodf:
            nib.save(
                nib.Nifti1Image(peaks_csd.shm_coeff.astype(np.float32),
                                vol.affine), args.fodf)

        if args.peaks:
            nib.save(
                nib.Nifti1Image(reshape_peaks_for_visualization(peaks_csd),
                                vol.affine), args.peaks)

        if args.peak_indices:
            nib.save(nib.Nifti1Image(peaks_csd.peak_indices, vol.affine),
                     args.peak_indices)
def tracking(image,
             bvecs,
             bvals,
             wm,
             seeds,
             fibers,
             prune_length=3,
             rseed=42,
             plot=False,
             proba=False,
             verbose=False):
    # Pipelines transcribed from:
    #   https://dipy.org/documentation/1.1.1./examples_built/tracking_introduction_eudx/#example-tracking-introduction-eudx
    #   https://dipy.org/documentation/1.1.1./examples_built/tracking_probabilistic/

    # Load Images
    dwi_loaded = nib.load(image)
    dwi_data = dwi_loaded.get_fdata()

    wm_loaded = nib.load(wm)
    wm_data = wm_loaded.get_fdata()

    seeds_loaded = nib.load(seeds)
    seeds_data = seeds_loaded.get_fdata()
    seeds = utils.seeds_from_mask(seeds_data, dwi_loaded.affine, density=2)

    # Load B-values & B-vectors
    # NB. Use aligned b-vecs if providing eddy-aligned data
    bvals, bvecs = read_bvals_bvecs(bvals, bvecs)
    gtab = gradient_table(bvals, bvecs)
    csa_model = CsaOdfModel(gtab, sh_order=6)

    # Set stopping criterion
    gfa = csa_model.fit(dwi_data, mask=wm_data).gfa
    stop_criterion = ThresholdStoppingCriterion(gfa, .25)

    if proba:
        # Establish ODF model
        response, ratio = auto_response(gtab,
                                        dwi_data,
                                        roi_radius=10,
                                        fa_thr=0.7)
        csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
        csd_fit = csd_model.fit(dwi_data, mask=wm_data)

        # Create Probabilisitic direction getter
        fod = csd_fit.odf(default_sphere)
        pmf = fod.clip(min=0)
        prob_dg = ProbabilisticDirectionGetter.from_pmf(pmf,
                                                        max_angle=30.,
                                                        sphere=default_sphere)
        # Use the probabilisitic direction getter as the dg
        dg = prob_dg

    else:
        # Establish ODF model
        csa_peaks = peaks_from_model(csa_model,
                                     dwi_data,
                                     default_sphere,
                                     relative_peak_threshold=0.8,
                                     min_separation_angle=45,
                                     mask=wm_data)

        # Use the CSA peaks as the dg
        dg = csa_peaks

    # Create generator and perform tracing
    s_generator = LocalTracking(dg,
                                stop_criterion,
                                seeds,
                                dwi_loaded.affine,
                                0.5,
                                random_seed=rseed)
    streamlines = Streamlines(s_generator)

    # Prune streamlines
    streamlines = ArraySequence(
        [strline for strline in streamlines if len(strline) > prune_length])
    sft = StatefulTractogram(streamlines, dwi_loaded, Space.RASMM)

    # Save streamlines
    save_trk(sft, fibers + ".trk")

    # Visualize fibers
    if plot and has_fury:
        from dipy.viz import window, actor, colormap as cmap

        # Create the 3D display.
        r = window.Renderer()
        r.add(actor.line(streamlines, cmap.line_colors(streamlines)))
        window.record(r, out_path=fibers + '.png', size=(800, 800))
Exemple #33
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            b0_threshold=50.0,
            bvecs_tol=0.01,
            roi_center=None,
            roi_radius=10,
            fa_thr=0.7,
            frf=None,
            extract_pam_values=False,
            sh_order=8,
            odf_to_sh_order=8,
            parallel=False,
            nbr_processes=None,
            out_dir='',
            out_pam='peaks.pam5',
            out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz',
            out_gfa='gfa.nii.gz'):
        """ Constrained spherical deconvolution

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Bvecs should be unit vectors. (default:0.01)
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]` (default None)
        roi_radius : int, optional
            radius of cubic ROI in voxels (default 10)
        fa_thr : float, optional
            FA threshold for calculating the response function (default 0.7)
        frf : variable float, optional
            Fiber response function can be for example inputed as 15 4 4
            (from the command line) or [15, 4, 4] from a Python script to be
            converted to float and mutiplied by 10**-4 . If None
            the fiber response function will be computed automatically
            (default: None).
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        parallel : bool, optional
            Whether to use parallelization in peak-finding during the
            calibration procedure. Default: False
        nbr_processes: int, optional
            If `parallel` is True, the number of subprocesses to use
            (default multiprocessing.cpu_count()).
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of
           the fibre orientation distribution in diffusion MRI: Non-negativity
           constrained super-resolved spherical deconvolution.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, opeaks_values,
             opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            print(b0_threshold, bvals.min())
            if b0_threshold < bvals.min():
                warn("b0_threshold (value: {0}) is too low, increase your "
                     "b0_threshold. It should higher than the first b0 value "
                     "({1}).".format(b0_threshold, bvals.min()))
            gtab = gradient_table(bvals,
                                  bvecs,
                                  b0_threshold=b0_threshold,
                                  atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            n_params = ((sh_order + 1) * (sh_order + 2)) / 2
            if data.shape[-1] < n_params:
                raise ValueError('You need at least {0} unique DWI volumes to '
                                 'compute fiber odfs. You currently have: {1}'
                                 ' DWI volumes.'.format(
                                     n_params, data.shape[-1]))

            if frf is None:
                logging.info('Computing response function')
                if roi_center is not None:
                    logging.info(
                        'Response ROI center:\n{0}'.format(roi_center))
                    logging.info(
                        'Response ROI radius:\n{0}'.format(roi_radius))
                response, ratio, nvox = auto_response(
                    gtab,
                    data,
                    roi_center=roi_center,
                    roi_radius=roi_radius,
                    fa_thr=fa_thr,
                    return_number_of_voxels=True)
                response = list(response)

            else:
                logging.info('Using response function')
                if isinstance(frf, str):
                    l01 = np.array(literal_eval(frf), dtype=np.float64)
                else:
                    l01 = np.array(frf, dtype=np.float64)

                l01 *= 10**-4
                response = np.array([l01[0], l01[1], l01[1]])
                ratio = l01[1] / l01[0]
                response = (response, ratio)

            logging.info("Eigenvalues for the frf of the input"
                         " data are :{0}".format(response[0]))
            logging.info(
                'Ratio for smallest to largest eigen value is {0}'.format(
                    ratio))

            peaks_sphere = get_sphere('repulsion724')

            logging.info('CSD computation started.')
            csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                        response,
                                                        sh_order=sh_order)

            peaks_csd = peaks_from_model(model=csd_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=sh_order,
                                         normalize_peaks=True,
                                         parallel=parallel,
                                         nbr_processes=nbr_processes)
            peaks_csd.affine = affine

            save_peaks(opam, peaks_csd)

            logging.info('CSD computation completed.')

            if extract_pam_values:
                peaks_to_niftis(peaks_csd,
                                oshm,
                                opeaks_dir,
                                opeaks_values,
                                opeaks_indices,
                                ogfa,
                                reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info('Pam5 file saved in {0}'.format(dname_))

            return io_it
Exemple #34
0
def test_csdeconv():
    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_fnames('small_64D')

    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs, b0_threshold=0)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    angles = [(0, 0), (60, 0)]

    S, sticks = multi_tensor(gtab, mevals, S0, angles=angles,
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric362')
    odf_gt = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50])
    response = (np.array([0.0015, 0.0003, 0.0003]), S0)
    csd = ConstrainedSphericalDeconvModel(gtab, response)
    csd_fit = csd.fit(S)
    assert_equal(csd_fit.shm_coeff[0] > 0, True)
    fodf = csd_fit.odf(sphere)

    directions, _, _ = peak_directions(odf_gt, sphere)
    directions2, _, _ = peak_directions(fodf, sphere)

    ang_sim = angular_similarity(directions, directions2)

    assert_equal(ang_sim > 1.9, True)
    assert_equal(directions.shape[0], 2)
    assert_equal(directions2.shape[0], 2)

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", category=UserWarning)
        _ = ConstrainedSphericalDeconvModel(gtab, response, sh_order=10)
        assert_greater(len([lw for lw in w if issubclass(lw.category,
                                                         UserWarning)]), 0)

    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", category=UserWarning)
        ConstrainedSphericalDeconvModel(gtab, response, sh_order=8)
        assert_equal(len([lw for lw in w if issubclass(lw.category,
                                                       UserWarning)]), 0)

    mevecs = []
    for s in sticks:
        mevecs += [all_tensor_evecs(s).T]

    S2 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    big_S = np.zeros((10, 10, 10, len(S2)))
    big_S[:] = S2

    aresponse, aratio = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                      roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])
    assert_almost_equal(aresponse[1], 100)
    assert_almost_equal(aratio, response[0][1] / response[0][0])

    auto_response(gtab, big_S, roi_radius=3, fa_thr=0.5)
    assert_array_almost_equal(aresponse[0], response[0])

    _, _, nvoxels = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                  roi_radius=30, fa_thr=0.5,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 1000)
    _, _, nvoxels = auto_response(gtab, big_S, roi_center=(5, 5, 4),
                                  roi_radius=30, fa_thr=1,
                                  return_number_of_voxels=True)
    assert_equal(nvoxels, 0)
Exemple #35
0
 def generate_response(self):
     response, ratio = auto_response(self.gtab,
                                     self.data,
                                     roi_radius=self.roi_radius,
                                     fa_thr=self.fa_thr)
     return response, ratio
mask_vol, mask_affine = load_nifti(fmask)

sh_order = 8
if data.shape[-1] < 15:
    raise ValueError(
        "You need at least 15 unique DWI volumes to "
        "compute fiber ODFs. You currently have: {0}"
        " DWI volumes.".format(data.shape[-1])
    )
elif data.shape[-1] < 30:
    sh_order = 6

from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, auto_response

response, ratio = auto_response(gtab, data)
response = list(response)

peaks_sphere = get_sphere("symmetric362")

model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=sh_order)

peaks_csd = peaks_from_model(
    model=model,
    data=data,
    sphere=peaks_sphere,
    relative_peak_threshold=0.5,
    min_separation_angle=25,
    mask=mask_vol,
    return_sh=True,
    sh_order=sh_order,
Exemple #37
0
def fiber_tracking(subject):
    # declare the type of algorithm, \in [deterministic, probabilitic]
    algo = 'deterministic'
    #     algo = 'probabilitic'
    '''
    @param subject: string represents the subject name
    @param algo: the name for the algorithms, \in ['deterministic', 'probabilitic']
    @return streamlines: for saving the final results and visualization
    '''

    print('processing for', subject)
    fname, bval_fname, bvec_fname, label_fname = get_file_names(subject)

    data, sub_affine, img = load_nifti(fname, return_img=True)
    bvals, bvecs = read_bvals_bvecs(bval_fname, bvec_fname)
    gtab = gradient_table(bvals, bvecs)
    labels = load_nifti_data(label_fname)

    print('data loading complete.\n')
    ##################################################################

    # set mask(s) and seed(s)
    # global_mask = binary_dilation((data[:, :, :, 0] != 0))
    global_mask = binary_dilation((labels == 1) | (labels == 2))
    #     global_mask = binary_dilation((labels == 2) | (labels == 32) | (labels == 76))
    affine = np.eye(4)
    seeds = utils.seeds_from_mask(global_mask, affine, density=1)
    print('mask(s) and seed(s) set complete.\n')
    ##################################################################

    print('getting directions from diffusion dataset...')

    # define tracking mask with Constant Solid Angle (CSA)
    csamodel = CsaOdfModel(gtab, 6)
    stopping_criterion = BinaryStoppingCriterion(global_mask)

    # define direction criterion
    direction_criterion = None
    print('Compute directions...')
    if algo == "deterministic":
        # EuDX
        direction_criterion = peaks.peaks_from_model(
            model=csamodel,
            data=data,
            sphere=peaks.default_sphere,
            relative_peak_threshold=.8,
            min_separation_angle=45,
            mask=global_mask)


#         # Deterministic Algorithm (select direction with max probability)
#         direction_criterion = DeterministicMaximumDirectionGetter.from_shcoeff(
#             csd_fit.shm_coeff,
#             max_angle=30.,
#             sphere=default_sphere)
    else:
        response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

        # fit the reconstruction model with Constrained Spherical Deconvolusion (CSD)
        csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
        csd_fit = csd_model.fit(data, mask=global_mask)

        #         gfa = csamodel.fit(data, mask=global_mask).gfa
        #     stopping_criterion = ThresholdStoppingCriterion(gfa, .25)

        # Probabilitic Algorithm
        direction_criterion = ProbabilisticDirectionGetter.from_shcoeff(
            csd_fit.shm_coeff, max_angle=30., sphere=default_sphere)

    print('direction computation complete.\n')
    ##################################################################

    print('start tracking process...')
    # start tracking
    streamline_generator = LocalTracking(direction_criterion,
                                         stopping_criterion,
                                         seeds,
                                         affine=affine,
                                         step_size=0.5)

    # Generate streamlines object
    streamlines = Streamlines(streamline_generator)

    sft = StatefulTractogram(streamlines, img, Space.RASMM)

    print('traking complete.\n')
    ##################################################################

    return {
        "subject": subject,
        "streamlines": streamlines,
        "sft": sft,
        "affine": sub_affine,
        "data": data,
        "img": img,
        "labels": labels
    }
Exemple #38
0
FA_img_test.SetDirection(ref_dir_test)
FA_img_test.SetOrigin(ref_org_test)
FA_img_test.SetSpacing(ref_spc_test)

sitk.WriteImage(FA_img_test, test_dir + 'results/test/FA_test.mhd')
sitk.WriteImage(FA_img_test, test_dir + 'results/test/FA_test.nii.gz' )

FA_img_test_nii= nib.load( test_dir + 'results/test/FA_test.nii.gz' )
FA_img_test_nii.header['srow_x']= FA_img_test_nii.affine[0,:]
FA_img_test_nii.header['srow_y']= FA_img_test_nii.affine[1,:]
FA_img_test_nii.header['srow_z']= FA_img_test_nii.affine[2,:]

affine_test= FA_img_test_nii.affine'''

response_test, ratio_test = auto_response(gtab_test,
                                          hardi_d_img_test_np,
                                          roi_radius=10,
                                          fa_thr=0.7)

# Tensor fitting methods

#   F- test and bootstrap

b_vals, b_vecs = b_vals_test.copy(), b_vecs_test.copy()

Lam = np.array([response_test[0][0], response_test[0][1]])
d_iso = 0.003

img_err_sd = np.zeros((sx, sy, sz, 5))
img_err_mf = np.zeros((sx, sy, sz, 5))
prd_err_sd = np.zeros((sx, sy, sz))
prd_err_mf = np.zeros((sx, sy, sz))
def track(dname, fdwi, fbval, fbvec, fmask=None, seed_density=1, show=False):

    data, affine = load_nifti(fdwi)
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=50)

    if fmask is None:
        from dipy.segment.mask import median_otsu
        b0_mask, mask = median_otsu(
            data)  # TODO: check parameters to improve the mask
    else:
        mask, mask_affine = load_nifti(fmask)
        mask = np.squeeze(mask)  #fix mask dimensions

    # compute DTI model
    from dipy.reconst.dti import TensorModel
    tenmodel = TensorModel(gtab)  #, fit_method='OLS') #, min_signal=5000)

    # fit the dti model
    tenfit = tenmodel.fit(data, mask=mask)

    # save fa
    ffa = dname + 'tensor_fa.nii.gz'

    fa_img = nib.Nifti1Image(tenfit.fa.astype(np.float32), affine)
    nib.save(fa_img, ffa)

    sh_order = 8  #TODO: check what that does
    if data.shape[-1] < 15:
        raise ValueError('You need at least 15 unique DWI volumes to '
                         'compute fiber ODFs. You currently have: {0}'
                         ' DWI volumes.'.format(data.shape[-1]))
    elif data.shape[-1] < 30:
        sh_order = 6

    # compute the response equation ?
    from dipy.reconst.csdeconv import auto_response
    response, ratio = auto_response(gtab, data)
    response = list(response)

    peaks_sphere = get_sphere('symmetric362')

    #TODO: check what that does
    peaks_csd = peaks_from_model(
        model=tenmodel,
        data=data,
        sphere=peaks_sphere,
        relative_peak_threshold=.5,  #.5
        min_separation_angle=25,
        mask=mask,
        return_sh=True,
        sh_order=sh_order,
        normalize_peaks=True,
        parallel=False)

    peaks_csd.affine = affine
    fpeaks = dname + 'peaks.npz'
    save_peaks(fpeaks, peaks_csd)

    from dipy.io.trackvis import save_trk
    from dipy.tracking import utils
    from dipy.tracking.local import (ThresholdTissueClassifier, LocalTracking)

    stopping_thr = 0.25  #0.25

    pam = load_peaks(fpeaks)

    #ffa = dname + 'tensor_fa_nomask.nii.gz'
    fa, fa_affine = load_nifti(ffa)

    classifier = ThresholdTissueClassifier(fa, stopping_thr)

    # seeds

    seed_mask = fa > 0.4  #0.4 #TODO: check this parameter

    seeds = utils.seeds_from_mask(seed_mask,
                                  density=seed_density,
                                  affine=affine)

    # tractography, if affine then in world coordinates
    streamlines = LocalTracking(pam,
                                classifier,
                                seeds,
                                affine=affine,
                                step_size=.5)

    # Compute streamlines and store as a list.
    streamlines = list(streamlines)

    ftractogram = dname + 'tractogram.trk'

    #save .trk
    save_trk_old_style(ftractogram, streamlines, affine, fa.shape)

    if show:
        #render
        show_results(data, streamlines, fa, fa_affine)
Exemple #40
0
selected_csf = np.zeros(FA.shape, dtype='bool')
selected_gm = np.zeros(FA.shape, dtype='bool')

selected_csf[indices_csf] = True
selected_gm[indices_gm] = True

csf_md = np.mean(MD[selected_csf])
gm_md = np.mean(MD[selected_gm])
"""
The ``auto_response`` function will calculate FA for an ROI of radius equal to
``roi_radius`` in the center of the volume and return the response function
estimated in that region for the voxels with FA higher than 0.7.
"""

response, ratio = auto_response(gtab, denoised_arr, roi_radius=10, fa_thr=0.7)
evals_d = response[0]
"""
We will now use the evals obtained from the ``auto_response`` to generate the
``multi_shell_fiber_response`` rquired by the MSMT-CSD model. Note that we
mead diffusivities of ``csf`` and ``gm`` as inputs to generate th response.
"""

response_mcsd = multi_shell_fiber_response(sh_order=8,
                                           bvals=bvals,
                                           evals=evals_d,
                                           csf_md=csf_md,
                                           gm_md=gm_md)
"""
Now we build the MSMT-CSD model with the ``response_mcsd`` as input. We then
call the ``fit`` function to fit one slice of the 3D data and visualize it.
Exemple #41
0
def main():
    start = time.time()

    with open('config.json') as config_json:
        config = json.load(config_json)

    # Load the data
    dmri_image = nib.load(config['data_file'])
    dmri = dmri_image.get_data()
    affine = dmri_image.affine
    #aparc_im = nib.load(config['freesurfer'])
    aparc_im = nib.load('volume.nii.gz')
    aparc = aparc_im.get_data()
    end = time.time()
    print('Loaded Files: ' + str((end - start)))
    print(dmri.shape)
    print(aparc.shape)

    # Create the white matter and callosal masks
    start = time.time()
    wm_regions = [
        2, 41, 16, 17, 28, 60, 51, 53, 12, 52, 12, 52, 13, 18, 54, 50, 11, 251,
        252, 253, 254, 255, 10, 49, 46, 7
    ]

    wm_mask = np.zeros(aparc.shape)
    for l in wm_regions:
        wm_mask[aparc == l] = 1
    #np.save('wm_mask',wm_mask)
    #p = os.getcwd()+'wm.json'
    #json.dump(wm_mask, codecs.open(p, 'w', encoding='utf-8'), separators=(',', ':'), sort_keys=True, indent=4)
    #with open('wm_mask.txt', 'wb') as wm:
    #np.savetxt('wm.txt', wm_mask, fmt='%5s')
    #print(wm_mask)
    # Create the gradient table from the bvals and bvecs

    bvals, bvecs = read_bvals_bvecs(config['data_bval'], config['data_bvec'])

    gtab = gradient_table(bvals, bvecs, b0_threshold=100)
    end = time.time()
    print('Created Gradient Table: ' + str((end - start)))

    ##The probabilistic model##
    """
    # Use the Constant Solid Angle (CSA) to find the Orientation Dist. Function
    # Helps orient the wm tracts
    start = time.time()
    csa_model = CsaOdfModel(gtab, sh_order=6)
    csa_peaks = peaks_from_model(csa_model, dmri, default_sphere,
                                 relative_peak_threshold=.8,
                                 min_separation_angle=45,
                                 mask=wm_mask)
    print('Creating CSA Model: ' + str(time.time() - start))
    """
    # Use the SHORE model to find Orientation Dist. Function
    start = time.time()
    shore_model = ShoreModel(gtab)
    shore_peaks = peaks_from_model(shore_model,
                                   dmri,
                                   default_sphere,
                                   relative_peak_threshold=.8,
                                   min_separation_angle=45,
                                   mask=wm_mask)
    print('Creating Shore Model: ' + str(time.time() - start))

    # Begins the seed in the wm tracts
    seeds = utils.seeds_from_mask(wm_mask, density=[1, 1, 1], affine=affine)
    print('Created White Matter seeds: ' + str(time.time() - start))

    # Create a CSD model to measure Fiber Orientation Dist
    print('Begin the probabilistic model')

    response, ratio = auto_response(gtab, dmri, roi_radius=10, fa_thr=0.7)
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)
    csd_fit = csd_model.fit(data=dmri, mask=wm_mask)
    print('Created the CSD model: ' + str(time.time() - start))

    # Set the Direction Getter to randomly choose directions

    prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                                        max_angle=30.,
                                                        sphere=default_sphere)
    print('Created the Direction Getter: ' + str(time.time() - start))

    # Restrict the white matter tracking
    classifier = ThresholdTissueClassifier(shore_peaks.gfa, .25)

    print('Created the Tissue Classifier: ' + str(time.time() - start))

    # Create the probabilistic model
    streamlines = LocalTracking(prob_dg,
                                tissue_classifier=classifier,
                                seeds=seeds,
                                step_size=.5,
                                max_cross=1,
                                affine=affine)
    print('Created the probabilistic model: ' + str(time.time() - start))

    # Compute streamlines and store as a list.
    streamlines = list(streamlines)
    print('Computed streamlines: ' + str(time.time() - start))

    #from dipy.tracking.streamline import transform_streamlines
    #streamlines = transform_streamlines(streamlines, np.linalg.inv(affine))

    # Create a tractogram from the streamlines and save it
    tractogram = Tractogram(streamlines, affine_to_rasmm=affine)
    save(tractogram, 'track.tck')
    end = time.time()
    print("Created the tck file: " + str((end - start)))
Exemple #42
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)

    assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs])
    assert_outputs_exists(parser, args, [args.frf_file])

    vol = nib.load(args.input)
    data = vol.get_data()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    check_b0_threshold(args, bvals.min())
    gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())

    if args.min_fa_thresh < 0.4:
        logging.warn(
            'Minimal FA threshold ({}) seems really small. Make sure it '
            'makes sense for this dataset.'.format(args.min_fa_thresh))

    if args.mask:
        mask = nib.load(args.mask).get_data().astype(np.bool)
        data = applymask(data, mask)

    if args.mask_wm:
        wm_mask = nib.load(args.mask_wm).get_data().astype('bool')
    else:
        wm_mask = np.ones_like(data[..., 0], dtype=np.bool)
        logging.warn(
            'No white matter mask specified! mask_data will be used instead, '
            'if it has been supplied. \nBe *VERY* careful about the '
            'estimation of the fiber response function to ensure no invalid '
            'voxel was used.')

    data_in_wm = applymask(data, wm_mask)

    fa_thresh = args.fa_thresh
    # Iteratively trying to fit at least 300 voxels. Lower the FA threshold
    # when it doesn't work. Fail if the fa threshold is smaller than
    # the min_threshold.
    # We use an epsilon since the -= 0.05 might incurs numerical imprecision.
    nvox = 0
    while nvox < args.min_nvox and fa_thresh >= args.min_fa_thresh - 0.00001:
        response, ratio, nvox = auto_response(gtab,
                                              data_in_wm,
                                              roi_center=args.roi_center,
                                              roi_radius=args.roi_radius,
                                              fa_thr=fa_thresh,
                                              return_number_of_voxels=True)

        logging.debug('Number of indices is %s with threshold of %s', nvox,
                      fa_thresh)
        fa_thresh -= 0.05

    if nvox < args.min_nvox:
        raise ValueError(
            "Could not find at least {} voxels with sufficient FA "
            "to estimate the FRF!".format(args.min_nvox))

    logging.debug("Found %i voxels with FA threshold %f for FRF estimation",
                  nvox, fa_thresh + 0.05)
    logging.debug("FRF eigenvalues: %s", str(response[0]))
    logging.debug("Ratio for smallest to largest eigen value is %f", ratio)
    logging.debug("Mean of the b=0 signal for voxels used for FRF: %f",
                  response[1])

    full_response = np.array(
        [response[0][0], response[0][1], response[0][2], response[1]])

    np.savetxt(args.frf_file, full_response)
Exemple #43
0
    def _run_interface(self, runtime):
        from dipy.core.gradients import GradientTable
        from dipy.reconst.dti import fractional_anisotropy, mean_diffusivity
        from dipy.reconst.csdeconv import recursive_response, auto_response

        img = nb.load(self.inputs.in_file)
        affine = img.get_affine()

        if isdefined(self.inputs.in_mask):
            msk = nb.load(self.inputs.in_mask).get_data()
            msk[msk > 0] = 1
            msk[msk < 0] = 0
        else:
            msk = np.ones(imref.get_shape())

        data = img.get_data().astype(np.float32)
        gtab = self._get_gradient_table()

        evals = np.nan_to_num(nb.load(self.inputs.in_evals).get_data())
        FA = np.nan_to_num(fractional_anisotropy(evals)) * msk
        indices = np.where(FA > self.inputs.fa_thresh)
        S0s = data[indices][:, np.nonzero(gtab.b0s_mask)[0]]
        S0 = np.mean(S0s)

        if self.inputs.auto:
            response, ratio = auto_response(gtab, data,
                                            roi_radius=self.inputs.roi_radius,
                                            fa_thr=self.inputs.fa_thresh)
            response = response[0].tolist() + [S0]
        elif self.inputs.recursive:
            MD = np.nan_to_num(mean_diffusivity(evals)) * msk
            indices = np.logical_or(
                FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011)))
            data = nb.load(self.inputs.in_file).get_data()
            response = recursive_response(gtab, data, mask=indices, sh_order=8,
                                          peak_thr=0.01, init_fa=0.08,
                                          init_trace=0.0021, iter=8,
                                          convergence=0.001,
                                          parallel=True)
            ratio = abs(response[1] / response[0])
        else:
            lambdas = evals[indices]
            l01 = np.sort(np.mean(lambdas, axis=0))

            response = np.array([l01[-1], l01[-2], l01[-2], S0])
            ratio = abs(response[1] / response[0])

        if ratio > 0.25:
            IFLOGGER.warn(('Estimated response is not prolate enough. '
                           'Ratio=%0.3f.') % ratio)
        elif ratio < 1.e-5 or np.any(np.isnan(response)):
            response = np.array([1.8e-3, 3.6e-4, 3.6e-4, S0])
            IFLOGGER.warn(
                ('Estimated response is not valid, using a default one'))
        else:
            IFLOGGER.info(('Estimated response: %s') % str(response[:3]))

        np.savetxt(op.abspath(self.inputs.response), response)

        wm_mask = np.zeros_like(FA)
        wm_mask[indices] = 1
        nb.Nifti1Image(
            wm_mask.astype(np.uint8), affine,
            None).to_filename(op.abspath(self.inputs.out_mask))
        return runtime
fmask = dname + 'mask_extern.nii'

mask_vol, mask_affine = load_nifti(fmask)

sh_order = 8
if data.shape[-1] < 15:
    raise ValueError('You need at least 15 unique DWI volumes to '
                     'compute fiber ODFs. You currently have: {0}'
                     ' DWI volumes.'.format(data.shape[-1]))
elif data.shape[-1] < 30:
    sh_order = 6

from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel,
                                   auto_response)

response, ratio = auto_response(gtab, data)
response = list(response)

peaks_sphere = get_sphere('symmetric362')

model = ConstrainedSphericalDeconvModel(gtab, response,
                                        sh_order=sh_order)

peaks_csd = peaks_from_model(model=model,
                             data=data,
                             sphere=peaks_sphere,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             mask=mask_vol,
                             return_sh=True,
                             sh_order=sh_order,
Exemple #45
0
                                   auto_response)
from dipy.tracking.local import LocalTracking, ParticleFilteringTracking
from dipy.tracking import utils
from dipy.viz import window, actor, colormap as cmap

renderer = window.Renderer()

img_pve_csf, img_pve_gm, img_pve_wm = read_stanford_pve_maps()
hardi_img, gtab, labels_img = read_stanford_labels()

data = hardi_img.get_data()
labels = labels_img.get_data()
affine = hardi_img.affine
shape = labels.shape

response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
csd_fit = csd_model.fit(data, mask=img_pve_wm.get_data())

dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                               max_angle=20.,
                                               sphere=default_sphere)
"""
CMC/ACT Tissue Classifiers
---------------------
Continuous map criterion (CMC) [Girard2014]_ and Anatomically-constrained
tractography (ACT) [Smith2012]_ both uses PVEs information from
anatomical images to determine when the tractography stops.
Both tissue classifiers use a trilinear interpolation
at the tracking position. CMC tissue classifier uses a probability derived from
the PVE maps to determine if the streamline reaches a 'valid' or 'invalid'
Exemple #46
0
def compCsdPeaks(basename, output, mask=None):
    home = os.getcwd()

    fbase = basename

    fdwi = fbase+".nii.gz"
    fbval = fbase+".bval"
    fbvec = fbase+".bvec"

    print fdwi,fbval,fbvec

    img = nib.load(fdwi)
    data = img.get_data()
    zooms = img.get_header().get_zooms()[:3]
    affine = img.get_affine()

    # reslice image into 1x1x1 iso voxel

#    new_zooms = (1., 1., 1.)
#    data, affine = resample(data, affine, zooms, new_zooms)
#    img = nib.Nifti1Image(data, affine)
#
#    print data.shape
#    print img.get_header().get_zooms()
#    print "###"
#
#    nib.save(img, 'C5_iso.nii.gz')

    bval, bvec = dio.read_bvals_bvecs(fbval, fbvec)
    # invert bvec z for GE scanner
    bvec[:,1]*= -1
    gtab = dgrad.gradient_table(bval, bvec)

    if mask is None:
        print 'generate mask'
        maskdata, mask = median_otsu(data, 3, 1, False, vol_idx=range(10, 50), dilate=2)
    else:
        mask = nib.load(mask).get_data()
        maskdata = applymask(data, mask)



#    tenmodel = dti.TensorModel(gtab)
#    tenfit = tenmodel.fit(data)
#    print('Computing anisotropy measures (FA, MD, RGB)')
#
#
#    FA = fractional_anisotropy(tenfit.evals)
#    FA[np.isnan(FA)] = 0
#
#    fa_img = nib.Nifti1Image(FA.astype(np.float32), img.get_affine())
#    nib.save(fa_img, 'FA.nii.gz')
#
#    return





    # estimate response function, ratio should be ~0.2

    response, ratio = auto_response(gtab, maskdata, roi_radius=10, fa_thr=0.7)
    print response, ratio



    # reconstruct csd model
    print "estimate csd_model"
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    #a_data = maskdata[40:80, 40:80, 60:61]
    #c_data = maskdata[40:80, 59:60, 50:80]
    #s_data = maskdata[59:60, 40:70, 30:80]
    #data_small = a_data
    #
#    evals = response[0]
#    evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
    #sphere = get_sphere('symmetric362')
    #csd_fit = csd_model.fit(data_small)
    #csd_odf = csd_fit.odf(sphere)
    #
    #
    #fodf_spheres = fvtk.sphere_funcs(csd_odf, sphere, scale=1, norm=False)
    ##fodf_spheres.GetProperty().SetOpacity(0.4)
    ##
    #fvtk.add(ren, fodf_spheres)
    ##fvtk.add(ren, fodf_peaks)
    #fvtk.show(ren)
    #
    #sys.exit()

    # fit csd peaks
    print "fit csd peaks"
    print "peaks_from_model using core# =" + str(multiprocessing.cpu_count())

    sphere = get_sphere('symmetric724')
    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 mask=mask,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=True, nbr_processes=10)

    #fodf_peaks = fvtk.peaks(csd_peaks.peak_dirs, csd_peaks.peak_values, scale=1)

#    fd, fname = mkstemp()
#    pickle.save_pickle(fname, csd_peaks)
#
#    os.close(fd)

    #pickle.dump(csd_peaks, open("csd.p", "wb"))


    with open(output, 'wb') as fout:
        cPickle.dump(csd_peaks, fout, -1)


    print "done writing to file %s"% (output)
    return csd_peaks