def test_standalone_functions(): # WLS procedure params = wls_fit_tensor(gtab_2s, DWI) assert_array_almost_equal(params[..., 12], GTF) fa = fractional_anisotropy(params[..., :3]) assert_array_almost_equal(fa, FAref) # NLS procedure params = nls_fit_tensor(gtab_2s, DWI) assert_array_almost_equal(params[..., 12], GTF) fa = fractional_anisotropy(params[..., :3]) assert_array_almost_equal(fa, FAref)
def test_response_from_mask(): fdata, fbvals, fbvecs = get_data('small_64D') bvals = np.load(fbvals) bvecs = np.load(fbvecs) data = nib.load(fdata).get_data() gtab = gradient_table(bvals, bvecs) ten = TensorModel(gtab) tenfit = ten.fit(data) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 radius = 3 for fa_thr in np.arange(0, 1, 0.1): response_auto, ratio_auto, nvoxels = auto_response(gtab, data, roi_center=None, roi_radius=radius, fa_thr=fa_thr, return_number_of_voxels=True) ci, cj, ck = np.array(data.shape[:3]) / 2 mask = np.zeros(data.shape[:3]) mask[ci - radius: ci + radius, cj - radius: cj + radius, ck - radius: ck + radius] = 1 mask[FA <= fa_thr] = 0 response_mask, ratio_mask = response_from_mask(gtab, data, mask) assert_equal(int(np.sum(mask)), nvoxels) assert_array_almost_equal(response_mask[0], response_auto[0]) assert_almost_equal(response_mask[1], response_auto[1]) assert_almost_equal(ratio_mask, ratio_auto)
def compute_reconstruction(src_dmri_dir, subj_name): src_dmri_file = os.path.join(src_dmri_dir, subj_name + par_iso_suffix) src_bval_file = src_dmri_dir + [each for each in os.listdir(src_dmri_dir) if each.endswith('.bval')][0] src_bvec_file = src_dmri_dir + [each for each in os.listdir(src_dmri_dir) if each.endswith('.bvec')][0] img = nib.load(src_dmri_file) bvals = np.loadtxt(src_bval_file) bvecs = np.loadtxt(src_bvec_file).T data = img.get_data() affine = img.get_affine() gradients = gradient_table(bvals,bvecs) tensor_model = dti.TensorModel(gradients) tensors = tensor_model.fit(data) FA = dti.fractional_anisotropy(tensors.evals) FA[np.isnan(FA)] = 0 Color_FA = np.array(255*(dti.color_fa(FA, tensors.evecs)),'uint8') out_evecs_file = os.path.join(src_dmri_dir, subj_name + par_evecs_suffix) evecs_img = nib.Nifti1Image(tensors.evecs.astype(np.float32), affine) nib.save(evecs_img, out_evecs_file) out_fa_file = os.path.join(src_dmri_dir, subj_name + par_fa_suffix) fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img, out_fa_file) out_cfa_file = os.path.join(src_dmri_dir, subj_name + par_cfa_tome_suffix) cfa_img = nib.Nifti1Image(Color_FA, affine) nib.save(cfa_img, out_cfa_file) dt = np.dtype([('R', 'u1'), ('G', 'u1'), ('B', 'u1')]) out_cfa_file = os.path.join(src_dmri_dir, subj_name + par_cfa_trkvis_suffix) cfa_img = nib.Nifti1Image((Color_FA.view((dt)).reshape(Color_FA.shape[:3])), affine) nib.save(cfa_img, out_cfa_file)
def DIPY_nii2streamlines(imgfile, maskfile, bvals, bvecs, output_prefix): import numpy as np import nibabel as nib import os from dipy.reconst.dti import TensorModel print "nii2streamlines" img = nib.load(imgfile) bvals = np.genfromtxt(bvals) bvecs = np.genfromtxt(bvecs) if bvecs.shape[1] != 3: bvecs = bvecs.T print bvecs.shape from nipype.utils.filemanip import split_filename _, prefix, _ = split_filename(imgfile) from dipy.data import gradient_table gtab = gradient_table(bvals, bvecs) data = img.get_data() affine = img.get_affine() zooms = img.get_header().get_zooms()[:3] new_zooms = (2., 2., 2.) data2, affine2 = data, affine mask = nib.load(maskfile).get_data().astype(np.bool) tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data2, mask) from dipy.reconst.dti import fractional_anisotropy FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 fa_img = nib.Nifti1Image(FA, img.get_affine()) nib.save(fa_img, experiment_dir + '/' + ('%s_tensor_fa.nii.gz' % prefix)) evecs = tenfit.evecs evec_img = nib.Nifti1Image(evecs, img.get_affine()) nib.save(evec_img, experiment_dir + '/' + ('%s_tensor_evec.nii.gz' % prefix)) from dipy.data import get_sphere sphere = get_sphere('symmetric724') from dipy.reconst.dti import quantize_evecs peak_indices = quantize_evecs(tenfit.evecs, sphere.vertices) from dipy.tracking.eudx import EuDX eu = EuDX(FA, peak_indices, odf_vertices = sphere.vertices, a_low=0.2, seeds=10**6, ang_thr=35) tensor_streamlines = [streamline for streamline in eu] hdr = nib.trackvis.empty_header() hdr['voxel_size'] = new_zooms hdr['voxel_order'] = 'LPS' hdr['dim'] = data2.shape[:3] import dipy.tracking.metrics as dmetrics tensor_streamlines = ((sl, None, None) for sl in tensor_streamlines if dmetrics.length(sl) > 15) ten_sl_fname = experiment_dir + '/' + ('%s_streamline.trk' % prefix) nib.trackvis.write(ten_sl_fname, tensor_streamlines, hdr, points_space='voxel') return ten_sl_fname
def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix): """ Compute DTI. :param fname_in: input 4d file. :param bvals: bvals txt file :param bvecs: bvecs txt file :param prefix: output prefix. Example: "dti_" :return: True/False """ # Open file. from msct_image import Image nii = Image(fname_in) data = nii.data print('data.shape (%d, %d, %d, %d)' % data.shape) # open bvecs/bvals from dipy.io import read_bvals_bvecs bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs) from dipy.core.gradients import gradient_table gtab = gradient_table(bvals, bvecs) # # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image. # from dipy.segment.mask import median_otsu # maskdata, mask = median_otsu(data, 3, 1, True, vol_idx=range(10, 50), dilate=2) # print('maskdata.shape (%d, %d, %d, %d)' % maskdata.shape) # fit tensor model import dipy.reconst.dti as dti tenmodel = dti.TensorModel(gtab) tenfit = tenmodel.fit(data) # Compute metrics printv('Computing metrics...', param.verbose) # FA from dipy.reconst.dti import fractional_anisotropy nii.data = fractional_anisotropy(tenfit.evals) nii.setFileName(prefix+'FA.nii.gz') nii.save('float32') # MD from dipy.reconst.dti import mean_diffusivity nii.data = mean_diffusivity(tenfit.evals) nii.setFileName(prefix+'MD.nii.gz') nii.save('float32') # RD from dipy.reconst.dti import radial_diffusivity nii.data = radial_diffusivity(tenfit.evals) nii.setFileName(prefix+'RD.nii.gz') nii.save('float32') # AD from dipy.reconst.dti import axial_diffusivity nii.data = axial_diffusivity(tenfit.evals) nii.setFileName(prefix+'AD.nii.gz') nii.save('float32') return True
def FA_RGB(data, gtab): """ Input : data, gtab taken from the load_data.py script. Return : FA and RGB as two nd numpy array """ tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) RGB = color_fa(FA, tenfit.evecs) return FA, RGB
def estimate_response(gtab, data, affine, mask, fa_thr=0.7): tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 mask[FA <= 0.1] = 0 mask[FA > 1.] = 0 indices = np.where(FA > fa_thr) lambdas = tenfit.evals[indices][:, :2] S0s = data[indices][:, 0] S0 = np.mean(S0s) l01 = np.mean(lambdas, axis=0) evals = np.array([l01[0], l01[1], l01[1]]) ratio = evals[1] / evals[0] print 'Response evals' , evals, ' ratio: ', ratio, '\tMean S0', S0 return (evals, S0), ratio
def prepare(training, category, snr, denoised, odeconv, tv, method): data, affine, gtab = get_specific_data(training, category, snr, denoised) prefix = create_file_prefix(training, category, snr, denoised, odeconv, tv, method) if training: mask = nib.load('wm_mask_hardi_01.nii.gz').get_data() else: #mask = np.ones(data.shape[:-1]) mask = nib.load('test_hardi_30_den=1_fa_0025_dilate2_mask.nii.gz').get_data() tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 mask[FA <= 0.1] = 0 mask[FA > 1.] = 0 indices = np.where(FA > 0.7) lambdas = tenfit.evals[indices][:, :2] S0s = data[indices][:, 0] S0 = np.mean(S0s) if S0 == 0: print 'S0 equals to 0 switching to 1' S0 = 1 l01 = np.mean(lambdas, axis=0) evals = np.array([l01[0], l01[1], l01[1]]) print evals, S0 return data, affine, gtab, mask, evals, S0, prefix
def test_color_fa(): data, gtab = dsi_voxels() dm = dti.TensorModel(gtab, 'LS') dmfit = dm.fit(data) fa = fractional_anisotropy(dmfit.evals) cfa = color_fa(fa, dmfit.evecs) fa = np.ones((3, 3, 3)) # evecs should be of shape (fa, 3, 3) evecs = np.zeros(fa.shape + (3, 2)) npt.assert_raises(ValueError, color_fa, fa, evecs) evecs = np.zeros(fa.shape + (3, 3)) evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert_equal(fa.shape, evecs[..., 0, 0].shape) assert_equal((3, 3), evecs.shape[-2:]) # 3D test case fa = np.ones((3, 3, 3)) evecs = np.zeros(fa.shape + (3, 3)) evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) cfa = color_fa(fa, evecs) cfa_truth = np.array([1, 0, 0]) true_cfa = np.reshape(np.tile(cfa_truth, 27), [3, 3, 3, 3]) assert_array_equal(cfa, true_cfa) # 2D test case fa = np.ones((3, 3)) evecs = np.zeros(fa.shape + (3, 3)) evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) cfa = color_fa(fa, evecs) cfa_truth = np.array([1, 0, 0]) true_cfa = np.reshape(np.tile(cfa_truth, 9), [3, 3, 3]) assert_array_equal(cfa, true_cfa) # 1D test case fa = np.ones((3)) evecs = np.zeros(fa.shape + (3, 3)) evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) cfa = color_fa(fa, evecs) cfa_truth = np.array([1, 0, 0]) true_cfa = np.reshape(np.tile(cfa_truth, 3), [3, 3]) assert_array_equal(cfa, true_cfa)
def segment_from_cfa(tensor_fit, roi, threshold, return_cfa=False): """ Segment the cfa inside roi using the values from threshold as bounds. Parameters ------------- tensor_fit : TensorFit object TensorFit object roi : ndarray A binary mask, which contains the bounding box for the segmentation. threshold : array-like An iterable that defines the min and max values to use for the thresholding. The values are specified as (R_min, R_max, G_min, G_max, B_min, B_max) return_cfa : bool, optional If True, the cfa is also returned. Returns ---------- mask : ndarray Binary mask of the segmentation. cfa : ndarray, optional Array with shape = (..., 3), where ... is the shape of tensor_fit. The color fractional anisotropy, ordered as a nd array with the last dimension of size 3 for the R, G and B channels. """ FA = fractional_anisotropy(tensor_fit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) # Clamp the FA to remove degenerate tensors cfa = color_fa(FA, tensor_fit.evecs) roi = np.asarray(roi, dtype=bool) include = ((cfa >= threshold[0::2]) & (cfa <= threshold[1::2]) & roi[..., None]) mask = np.all(include, axis=-1) if return_cfa: return mask, cfa return mask
def tractography_rec(imag, bvals, bvecs, seed, threshold): ''' Script to generate tractography. Uses the EuDX function from dipy. Returns tractography and FA. Parameters ---------- imag: NiftiImage object bvals: bvals array bvecs: bvecs array seed: int or ndarray (Parameter for the EuDX function) threshold : float (Parameter for the EuDX function) ''' print "Retrieving data and affine" data = img.get_data() affine = img.get_affine() #new version of dipy print "Computing tensor model" gradients = gradient_table(bvals,bvecs) tensor_model = dti.TensorModel(gradients) tensors = tensor_model.fit(data) print "Computing FA" FA = dti.fractional_anisotropy(tensors.evals) FA[np.isnan(FA)] = 0 print "Computing evecs" evecs_img = nib.Nifti1Image(tensors.evecs.astype(np.float32), affine) evecs = evecs_img.get_data() sphere = get_sphere('symmetric724') peak_indices = dti.quantize_evecs(evecs, sphere.vertices) print "Computing EuDX reconstruction." streamlines = EuDX(FA.astype('f8'), ind=peak_indices, seeds=seed, odf_vertices= sphere.vertices, a_low=threshold) return streamlines, FA
def single_fiber_response(diffusionData, mask, gtable, fa_thr = 0.7): from dipy.reconst.dti import TensorModel, fractional_anisotropy ten = TensorModel(gtable) tenfit = ten.fit(diffusionData, mask=mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 indices = np.where(FA > fa_thr) lambdas = tenfit.evals[indices][:, :2] S0s = diffusionData[indices][:, np.nonzero(gtable.b0s_mask)[0]] S0 = np.mean(S0s) l01 = np.mean(lambdas, axis=0) evals = np.array([l01[0], l01[1], l01[1]]) response = (evals, S0) ratio = evals[1]/evals[0] return response, ratio
def tensor_model( input_filename_data, input_filename_bvecs, input_filename_bvals, output_filename_fa=None, output_filename_evecs=None ): # print 'Tensor model ...' # print 'Loading data ...' img = nib.load(input_filename_data) data = img.get_data() affine = img.get_affine() bvals, bvecs = read_bvals_bvecs(input_filename_bvals, input_filename_bvecs) gtab = gradient_table(bvals, bvecs) mask = data[..., 0] > 50 tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 if output_filename_fa == None: filename_save_fa = input_filename_data.split(".")[0] + "_tensor_fa.nii.gz" else: filename_save_fa = os.path.abspath(output_filename_fa) fa_img = nib.Nifti1Image(FA, img.get_affine()) nib.save(fa_img, filename_save_fa) print "Saving fa to:", filename_save_fa if output_filename_evecs == None: filename_save_evecs = input_filename_data.split(".")[0] + "_tensor_evecs.nii.gz" else: filename_save_evecs = os.path.abspath(output_filename_evecs) evecs_img = nib.Nifti1Image(tenfit.evecs, img.get_affine()) nib.save(evecs_img, filename_save_evecs) print "Saving evecs to:", filename_save_evecs return filename_save_fa, filename_save_evecs
def tensor2fa(tensors, tensor_name, dwi, derivdir, qcdir): ''' outdir: location of output directory. fname: name of output fa map file. default is none (name created based on input file) ''' dwi_data = nb.load(dwi) affine = dwi_data.get_affine() dwi_data = dwi_data.get_data() # create FA map FA = fractional_anisotropy(tensors.evals) FA[np.isnan(FA)] = 0 # generate the RGB FA map FA = np.clip(FA, 0, 1) RGB = color_fa(FA, tensors.evecs) fname = os.path.split(tensor_name)[1].split(".")[0] + '_fa_rgb.nii.gz' fa = nb.Nifti1Image(np.array(255 * RGB, 'uint8'), affine) nb.save(fa, derivdir + fname) fa_pngs(fa, fname, qcdir)
def mask_for_response_ssst(gtab, data, roi_center=None, roi_radii=10, fa_thr=0.7): """ Computation of mask for single-shell single-tissue (ssst) response function using FA. Parameters ---------- gtab : GradientTable data : ndarray diffusion data (4D) roi_center : array-like, (3,) Center of ROI in data. If center is None, it is assumed that it is the center of the volume with shape `data.shape[:3]`. roi_radii : int or array-like, (3,) radii of cuboid ROI fa_thr : float FA threshold Returns ------- mask : ndarray Mask of voxels within the ROI and with FA above the FA threshold. Notes ----- In CSD there is an important pre-processing step: the estimation of the fiber response function. In order to do this, we look for voxels with very anisotropic configurations. This function aims to accomplish that by returning a mask of voxels within a ROI, that have a FA value above a given threshold. For example we can use a ROI (20x20x20) at the center of the volume and store the signal values for the voxels with FA values higher than 0.7 (see [1]_). References ---------- .. [1] Tournier, J.D., et al. NeuroImage 2004. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution """ if len(data.shape) < 4: msg = """Data must be 4D (3D image + directions). To use a 2D image, please reshape it into a (N, N, 1, ndirs) array.""" raise ValueError(msg) if isinstance(roi_radii, numbers.Number): roi_radii = (roi_radii, roi_radii, roi_radii) if roi_center is None: roi_center = np.array(data.shape[:3]) // 2 roi_radii = _roi_in_volume(data.shape, np.asarray(roi_center), np.asarray(roi_radii)) roi_mask = _mask_from_roi(data.shape[:3], roi_center, roi_radii) ten = TensorModel(gtab) tenfit = ten.fit(data, mask=roi_mask) fa = fractional_anisotropy(tenfit.evals) fa[np.isnan(fa)] = 0 mask = np.zeros(fa.shape, dtype=np.int64) mask[fa > fa_thr] = 1 if np.sum(mask) == 0: msg = """No voxel with a FA higher than {} were found. Try a larger roi or a lower threshold.""".format(str(fa_thr)) warnings.warn(msg, UserWarning) return mask
def main(): parser = buildArgsParser() args = parser.parse_args() # Load data img = nib.load(args.input) data = img.get_data() affine = img.get_affine() # Setting suffix savename if args.savename is None: filename = "" else: filename = args.savename + "_" if os.path.exists(filename + 'fa.nii.gz'): if not args.overwrite: raise ValueError("File " + filename + "fa.nii.gz" + " already exists. Use -f option to overwrite.") print (filename + "fa.nii.gz", " already exists and will be overwritten.") if args.mask is not None: mask = nib.load(args.mask).get_data() else: print("No mask specified. Computing mask with median_otsu.") data, mask = median_otsu(data) mask_img = nib.Nifti1Image(mask.astype(np.float32), affine) nib.save(mask_img, filename + 'mask.nii.gz') # Get tensors print('Tensor estimation...') b_vals, b_vecs = read_bvals_bvecs(args.bvals, args.bvecs) gtab = gradient_table_from_bvals_bvecs(b_vals, b_vecs) tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) # FA print('Computing FA...') FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 # RGB print('Computing RGB...') FA = np.clip(FA, 0, 1) RGB = color_fa(FA, tenfit.evecs) if args.all : print('Computing Diffusivities...') # diffusivities MD = mean_diffusivity(tenfit.evals) AD = axial_diffusivity(tenfit.evals) RD = radial_diffusivity(tenfit.evals) print('Computing Mode...') MODE = mode(tenfit.quadratic_form) print('Saving tensor coefficients and metrics...') # Get the Tensor values and format them for visualisation in the Fibernavigator. tensor_vals = lower_triangular(tenfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] fiber_tensors = nib.Nifti1Image(tensor_vals_reordered.astype(np.float32), affine) nib.save(fiber_tensors, filename + 'tensors.nii.gz') # Save - for some reason this is not read properly by the FiberNav md_img = nib.Nifti1Image(MD.astype(np.float32), affine) nib.save(md_img, filename + 'md.nii.gz') ad_img = nib.Nifti1Image(AD.astype(np.float32), affine) nib.save(ad_img, filename + 'ad.nii.gz') rd_img = nib.Nifti1Image(RD.astype(np.float32), affine) nib.save(rd_img, filename + 'rd.nii.gz') mode_img = nib.Nifti1Image(MODE.astype(np.float32), affine) nib.save(mode_img, filename + 'mode.nii.gz') fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img, filename + 'fa.nii.gz') rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine) nib.save(rgb_img, filename + 'rgb.nii.gz')
def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix, method, file_mask): """ Compute DTI. :param fname_in: input 4d file. :param bvals: bvals txt file :param bvecs: bvecs txt file :param prefix: output prefix. Example: "dti_" :param method: algo for computing dti :return: True/False """ # Open file. from msct_image import Image nii = Image(fname_in) data = nii.data print('data.shape (%d, %d, %d, %d)' % data.shape) # open bvecs/bvals from dipy.io import read_bvals_bvecs bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs) from dipy.core.gradients import gradient_table gtab = gradient_table(bvals, bvecs) # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image. if not file_mask == '': printv('Open mask file...', param.verbose) # open mask file nii_mask = Image(file_mask) mask = nii_mask.data # fit tensor model printv('Computing tensor using "'+method+'" method...', param.verbose) import dipy.reconst.dti as dti if method == 'standard': tenmodel = dti.TensorModel(gtab) if file_mask == '': tenfit = tenmodel.fit(data) else: tenfit = tenmodel.fit(data, mask) elif method == 'restore': import dipy.denoise.noise_estimate as ne sigma = ne.estimate_sigma(data) dti_restore = dti.TensorModel(gtab, fit_method='RESTORE', sigma=sigma) if file_mask == '': tenfit = dti_restore.fit(data) else: tenfit = dti_restore.fit(data, mask) # Compute metrics printv('Computing metrics...', param.verbose) # FA from dipy.reconst.dti import fractional_anisotropy nii.data = fractional_anisotropy(tenfit.evals) nii.setFileName(prefix+'FA.nii.gz') nii.save('float32') # MD from dipy.reconst.dti import mean_diffusivity nii.data = mean_diffusivity(tenfit.evals) nii.setFileName(prefix+'MD.nii.gz') nii.save('float32') # RD from dipy.reconst.dti import radial_diffusivity nii.data = radial_diffusivity(tenfit.evals) nii.setFileName(prefix+'RD.nii.gz') nii.save('float32') # AD from dipy.reconst.dti import axial_diffusivity nii.data = axial_diffusivity(tenfit.evals) nii.setFileName(prefix+'AD.nii.gz') nii.save('float32') return True
def auto_response(gtab, data, roi_center=None, roi_radius=10, fa_thr=0.7, fa_callable=fa_superior, return_number_of_voxels=False): """ Automatic estimation of response function using FA. Parameters ---------- gtab : GradientTable data : ndarray diffusion data roi_center : tuple, (3,) Center of ROI in data. If center is None, it is assumed that it is the center of the volume with shape `data.shape[:3]`. roi_radius : int radius of cubic ROI fa_thr : float FA threshold fa_callable : callable A callable that defines an operation that compares FA with the fa_thr. The operator should have two positional arguments (e.g., `fa_operator(FA, fa_thr)`) and it should return a bool array. return_number_of_voxels : bool If True, returns the number of voxels used for estimating the response function. Returns ------- response : tuple, (2,) (`evals`, `S0`) ratio : float The ratio between smallest versus largest eigenvalue of the response. number of voxels : int (optional) The number of voxels used for estimating the response function. Notes ----- In CSD there is an important pre-processing step: the estimation of the fiber response function. In order to do this we look for voxels with very anisotropic configurations. For example we can use an ROI (20x20x20) at the center of the volume and store the signal values for the voxels with FA values higher than 0.7. Of course, if we haven't precalculated FA we need to fit a Tensor model to the datasets. Which is what we do in this function. For the response we also need to find the average S0 in the ROI. This is possible using `gtab.b0s_mask()` we can find all the S0 volumes (which correspond to b-values equal 0) in the dataset. The `response` consists always of a prolate tensor created by averaging the highest and second highest eigenvalues in the ROI with FA higher than threshold. We also include the average S0s. We also return the `ratio` which is used for the SDT models. If requested, the number of voxels used for estimating the response function is also returned, which can be used to judge the fidelity of the response function. As a rule of thumb, at least 300 voxels should be used to estimate a good response function (see [1]_). References ---------- .. [1] Tournier, J.D., et al. NeuroImage 2004. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution """ ten = TensorModel(gtab) if roi_center is None: ci, cj, ck = np.array(data.shape[:3]) // 2 else: ci, cj, ck = roi_center w = roi_radius roi = data[int(ci - w): int(ci + w), int(cj - w): int(cj + w), int(ck - w): int(ck + w)] tenfit = ten.fit(roi) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 indices = np.where(fa_callable(FA, fa_thr)) if indices[0].size == 0: msg = "No voxel with a FA higher than " + str(fa_thr) + " were found." msg += " Try a larger roi or a lower threshold." warnings.warn(msg, UserWarning) lambdas = tenfit.evals[indices][:, :2] S0s = roi[indices][:, np.nonzero(gtab.b0s_mask)[0]] response, ratio = _get_response(S0s, lambdas) if return_number_of_voxels: return response, ratio, indices[0].size return response, ratio
def eudx_advanced(self, dti_file, mask_file, gtab, seed_num=100000, stop_val=0.1): """ Tracking with more complex tensors - experimental Initializes the graph with nodes corresponding to the number of ROIs **Positional Arguments:** dti_file: - File (registered) to use for tensor/fiber tracking mask_file: - Brain mask to keep tensors inside the brain gtab: - dipy formatted bval/bvec Structure **Optional Arguments:** seed_num: - Number of seeds to use for fiber tracking stop_val: - Value to cutoff fiber track """ img = nb.load(dti_file) data = img.get_data() img = nb.load(mask_file) mask = img.get_data() mask = mask > 0 # to ensure binary mask """ For the constrained spherical deconvolution we need to estimate the response function (see :ref:`example_reconst_csd`) and create a model. """ response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7) csd_model = ConstrainedSphericalDeconvModel(gtab, response) """ Next, we use ``peaks_from_model`` to fit the data and calculated the fiber directions in all voxels. """ sphere = get_sphere('symmetric724') csd_peaks = peaks_from_model(model=csd_model, data=data, sphere=sphere, mask=mask, relative_peak_threshold=.5, min_separation_angle=25, parallel=True) """ For the tracking part, we will use ``csd_model`` fiber directions but stop tracking where fractional anisotropy (FA) is low (< 0.1). To derive the FA, used as a stopping criterion, we need to fit a tensor model first. Here, we use weighted least squares (WLS). """ print 'tensors...' tensor_model = TensorModel(gtab, fit_method='WLS') tensor_fit = tensor_model.fit(data, mask) FA = fractional_anisotropy(tensor_fit.evals) """ In order for the stopping values to be used with our tracking algorithm we need to have the same dimensions as the ``csd_peaks.peak_values``. For this reason, we can assign the same FA value to every peak direction in the same voxel in the following way. """ stopping_values = np.zeros(csd_peaks.peak_values.shape) stopping_values[:] = FA[..., None] streamline_generator = EuDX(stopping_values, csd_peaks.peak_indices, seeds=seed_num, odf_vertices=sphere.vertices, a_low=stop_val) streamlines = [streamline for streamline in streamline_generator] return streamlines
def auto_response(gtab, data, roi_center=None, roi_radius=10, fa_thr=0.7): """ Automatic estimation of response function using FA Parameters ---------- gtab : GradientTable data : ndarray diffusion data roi_center : tuple, (3,) Center of ROI in data. If center is None, it is assumed that it is the center of the volume with shape `data.shape[:3]`. roi_radius : int radius of cubic ROI fa_thr : float FA threshold Returns ------- response : tuple, (2,) (`evals`, `S0`) ratio : float the ratio between smallest versus largest eigenvalue of the response Notes ----- In CSD there is an important pre-processing step: the estimation of the fiber response function. In order to do this we look for voxels with very anisotropic configurations. For example we can use an ROI (20x20x20) at the center of the volume and store the signal values for the voxels with FA values higher than 0.7. Of course, if we haven't precalculated FA we need to fit a Tensor model to the datasets. Which is what we do in this function. For the response we also need to find the average S0 in the ROI. This is possible using `gtab.b0s_mask()` we can find all the S0 volumes (which correspond to b-values equal 0) in the dataset. The `response` consists always of a prolate tensor created by averaging the highest and second highest eigenvalues in the ROI with FA higher than threshold. We also include the average S0s. Finally, we also return the `ratio` which is used for the SDT models. """ ten = TensorModel(gtab) if roi_center is None: ci, cj, ck = np.array(data.shape[:3]) / 2 else: ci, cj, ck = roi_center w = roi_radius roi = data[ci - w: ci + w, cj - w: cj + w, ck - w: ck + w] tenfit = ten.fit(roi) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 indices = np.where(FA > fa_thr) lambdas = tenfit.evals[indices][:, :2] S0s = roi[indices][:, np.nonzero(gtab.b0s_mask)[0]] S0 = np.mean(S0s) l01 = np.mean(lambdas, axis=0) evals = np.array([l01[0], l01[1], l01[1]]) response = (evals, S0) ratio = evals[1]/evals[0] return response, ratio
def _run_interface(self, runtime): from dipy.core.gradients import GradientTable from dipy.reconst.dti import fractional_anisotropy, mean_diffusivity from dipy.reconst.csdeconv import recursive_response, auto_response img = nb.load(self.inputs.in_file) affine = img.get_affine() if isdefined(self.inputs.in_mask): msk = nb.load(self.inputs.in_mask).get_data() msk[msk > 0] = 1 msk[msk < 0] = 0 else: msk = np.ones(imref.get_shape()) data = img.get_data().astype(np.float32) gtab = self._get_gradient_table() evals = np.nan_to_num(nb.load(self.inputs.in_evals).get_data()) FA = np.nan_to_num(fractional_anisotropy(evals)) * msk indices = np.where(FA > self.inputs.fa_thresh) S0s = data[indices][:, np.nonzero(gtab.b0s_mask)[0]] S0 = np.mean(S0s) if self.inputs.auto: response, ratio = auto_response(gtab, data, roi_radius=self.inputs.roi_radius, fa_thr=self.inputs.fa_thresh) response = response[0].tolist() + [S0] elif self.inputs.recursive: MD = np.nan_to_num(mean_diffusivity(evals)) * msk indices = np.logical_or( FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011))) data = nb.load(self.inputs.in_file).get_data() response = recursive_response(gtab, data, mask=indices, sh_order=8, peak_thr=0.01, init_fa=0.08, init_trace=0.0021, iter=8, convergence=0.001, parallel=True) ratio = abs(response[1] / response[0]) else: lambdas = evals[indices] l01 = np.sort(np.mean(lambdas, axis=0)) response = np.array([l01[-1], l01[-2], l01[-2], S0]) ratio = abs(response[1] / response[0]) if ratio > 0.25: IFLOGGER.warn(('Estimated response is not prolate enough. ' 'Ratio=%0.3f.') % ratio) elif ratio < 1.e-5 or np.any(np.isnan(response)): response = np.array([1.8e-3, 3.6e-4, 3.6e-4, S0]) IFLOGGER.warn( ('Estimated response is not valid, using a default one')) else: IFLOGGER.info(('Estimated response: %s') % str(response[:3])) np.savetxt(op.abspath(self.inputs.response), response) wm_mask = np.zeros_like(FA) wm_mask[indices] = 1 nb.Nifti1Image( wm_mask.astype(np.uint8), affine, None).to_filename(op.abspath(self.inputs.out_mask)) return runtime
def tensor(evals, evecs, scalar_colors=None, sphere=None, scale=2.2, norm=True): """Plot many tensors as ellipsoids simultaneously. Parameters ---------- evals : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray eigenvalues evecs : (3, 3) or (X, 3, 3) or (X, Y, 3, 3) or (X, Y, Z, 3, 3) ndarray eigenvectors scalar_colors : (3,) or (X, 3) or (X, Y, 3) or (X, Y, Z, 3) ndarray RGB colors used to show the tensors Default None, color the ellipsoids using ``color_fa`` sphere : Sphere, this sphere will be transformed to the tensor ellipsoid Default is None which uses a symmetric sphere with 724 points. scale : float, distance between ellipsoids. norm : boolean, Normalize `evals`. Returns ------- actor : vtkActor Ellipsoids Examples -------- >>> from dipy.viz import fvtk >>> r = fvtk.ren() >>> evals = np.array([1.4, .35, .35]) * 10 ** (-3) >>> evecs = np.eye(3) >>> from dipy.data import get_sphere >>> sphere = get_sphere('symmetric724') >>> fvtk.add(r, fvtk.tensor(evals, evecs, sphere=sphere)) >>> #fvtk.show(r) """ evals = np.asarray(evals) if evals.ndim > 4: raise ValueError("Wrong shape") evals = _makeNd(evals, 4) evecs = _makeNd(evecs, 5) grid_shape = np.array(evals.shape[:3]) if sphere is None: from dipy.data import get_sphere sphere = get_sphere('symmetric724') faces = np.asarray(sphere.faces, dtype=int) vertices = sphere.vertices colors = vtk.vtkUnsignedCharArray() colors.SetNumberOfComponents(3) colors.SetName("Colors") if scalar_colors is None: from dipy.reconst.dti import color_fa, fractional_anisotropy cfa = color_fa(fractional_anisotropy(evals), evecs) else: cfa = _makeNd(scalar_colors, 4) list_sq = [] list_cols = [] for ijk in ndindex(grid_shape): ea = evals[ijk] if norm: ea /= ea.max() ea = np.diag(ea.copy()) ev = evecs[ijk].copy() xyz = np.dot(ev, np.dot(ea, vertices.T)) xyz += scale * (ijk - grid_shape / 2.)[:, None] xyz = xyz.T list_sq.append(xyz) acolor = np.zeros(xyz.shape) acolor[:, :] = np.interp(cfa[ijk], [0, 1], [0, 255]) list_cols.append(acolor.astype('ubyte')) points = vtk.vtkPoints() triangles = vtk.vtkCellArray() for k in xrange(len(list_sq)): xyz = list_sq[k] cols = list_cols[k] for i in xrange(xyz.shape[0]): points.InsertNextPoint(*xyz[i]) colors.InsertNextTuple3(*cols[i]) for j in xrange(faces.shape[0]): triangle = vtk.vtkTriangle() triangle.GetPointIds().SetId(0, faces[j, 0] + k * xyz.shape[0]) triangle.GetPointIds().SetId(1, faces[j, 1] + k * xyz.shape[0]) triangle.GetPointIds().SetId(2, faces[j, 2] + k * xyz.shape[0]) triangles.InsertNextCell(triangle) del triangle polydata = vtk.vtkPolyData() polydata.SetPoints(points) polydata.SetPolys(triangles) polydata.GetPointData().SetScalars(colors) polydata.Modified() mapper = vtk.vtkPolyDataMapper() if major_version <= 5: mapper.SetInput(polydata) else: mapper.SetInputData(polydata) actor = vtk.vtkActor() actor.SetMapper(mapper) return actor
def test_recursive_response_calibration(): """ Test the recursive response calibration method. """ SNR = 100 S0 = 1 sh_order = 8 _, fbvals, fbvecs = get_data('small_64D') bvals = np.load(fbvals) bvecs = np.load(fbvecs) sphere = get_sphere('symmetric724') gtab = gradient_table(bvals, bvecs) evals = np.array([0.0015, 0.0003, 0.0003]) evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003])) angles = [(0, 0), (90, 0)] where_dwi = lazy_index(~gtab.b0s_mask) S_cross, sticks_cross = multi_tensor(gtab, mevals, S0, angles=angles, fractions=[50, 50], snr=SNR) S_single = single_tensor(gtab, S0, evals, evecs, snr=SNR) data = np.concatenate((np.tile(S_cross, (8, 1)), np.tile(S_single, (2, 1))), axis=0) odf_gt_cross = multi_tensor_odf(sphere.vertices, mevals, angles, [50, 50]) odf_gt_single = single_tensor_odf(sphere.vertices, evals, evecs) response = recursive_response(gtab, data, mask=None, sh_order=8, peak_thr=0.01, init_fa=0.05, init_trace=0.0021, iter=8, convergence=0.001, parallel=False) csd = ConstrainedSphericalDeconvModel(gtab, response) csd_fit = csd.fit(data) assert_equal(np.all(csd_fit.shm_coeff[:, 0] >= 0), True) fodf = csd_fit.odf(sphere) directions_gt_single, _, _ = peak_directions(odf_gt_single, sphere) directions_gt_cross, _, _ = peak_directions(odf_gt_cross, sphere) directions_single, _, _ = peak_directions(fodf[8, :], sphere) directions_cross, _, _ = peak_directions(fodf[0, :], sphere) ang_sim = angular_similarity(directions_cross, directions_gt_cross) assert_equal(ang_sim > 1.9, True) assert_equal(directions_cross.shape[0], 2) assert_equal(directions_gt_cross.shape[0], 2) ang_sim = angular_similarity(directions_single, directions_gt_single) assert_equal(ang_sim > 0.9, True) assert_equal(directions_single.shape[0], 1) assert_equal(directions_gt_single.shape[0], 1) sphere = Sphere(xyz=gtab.gradients[where_dwi]) sf = response.on_sphere(sphere) S = np.concatenate(([response.S0], sf)) tenmodel = dti.TensorModel(gtab, min_signal=0.001) tenfit = tenmodel.fit(S) FA = fractional_anisotropy(tenfit.evals) FA_gt = fractional_anisotropy(evals) assert_almost_equal(FA, FA_gt, 1)
def dodata(f_name,data_path): dipy_home = pjoin(os.path.expanduser('~'), 'dipy_data') folder = pjoin(dipy_home, data_path) fraw = pjoin(folder, f_name+'.nii.gz') fbval = pjoin(folder, f_name+'.bval') fbvec = pjoin(folder, f_name+'.bvec') flabels = pjoin(folder, f_name+'.nii-label.nii.gz') bvals, bvecs = read_bvals_bvecs(fbval, fbvec) gtab = gradient_table(bvals, bvecs) img = nib.load(fraw) data = img.get_data() affine = img.get_affine() label_img = nib.load(flabels) labels=label_img.get_data() lap=through_label_sl.label_position(labels, labelValue=1) dataslice = data[40:80, 20:80, lap[2][2] / 2] #print lap[2][2]/2 #get_csd_gfa(f_name,data,gtab,dataslice) maskdata, mask = median_otsu(data, 2, 1, False, vol_idx=range(10, 50), dilate=2) #不去背景 """ get fa and tensor evecs and ODF""" from dipy.reconst.dti import TensorModel,mean_diffusivity tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) sphere = get_sphere('symmetric724') FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 np.save(os.getcwd()+'\zhibiao'+f_name+'_FA.npy',FA) fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img,os.getcwd()+'\zhibiao'+f_name+'_FA.nii.gz') print('Saving "DTI_tensor_fa.nii.gz" sucessful.') evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine) nib.save(evecs_img, os.getcwd()+'\zhibiao'+f_name+'_DTI_tensor_evecs.nii.gz') print('Saving "DTI_tensor_evecs.nii.gz" sucessful.') MD1 = mean_diffusivity(tenfit.evals) nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()), os.getcwd()+'\zhibiao'+f_name+'_MD.nii.gz') #tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere) #from dipy.reconst.odf import gfa #dti_gfa=gfa(tensor_odfs) wm_mask = (np.logical_or(FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011)))) response = recursive_response(gtab, data, mask=wm_mask, sh_order=8, peak_thr=0.01, init_fa=0.08, init_trace=0.0021, iter=8, convergence=0.001, parallel=False) from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel csd_model = ConstrainedSphericalDeconvModel(gtab, response) #csd_fit = csd_model.fit(data) from dipy.direction import peaks_from_model csd_peaks = peaks_from_model(model=csd_model, data=data, sphere=sphere, relative_peak_threshold=.5, min_separation_angle=25, parallel=False) GFA = csd_peaks.gfa nib.save(GFA, os.getcwd()+'\zhibiao'+f_name+'_MSD.nii.gz') print('Saving "GFA.nii.gz" sucessful.') from dipy.reconst.shore import ShoreModel asm = ShoreModel(gtab) print('Calculating...SHORE msd') asmfit = asm.fit(data,mask) msd = asmfit.msd() msd[np.isnan(msd)] = 0 #print GFA[:,:,slice].T print('Saving msd_img.png') nib.save(msd, os.getcwd()+'\zhibiao'+f_name+'_GFA.nii.gz')
# --------------------------------------------------------------- print('Fitting the free water DTI model...') # --------------------------------------------------------------- t0 = time.time() fw_params = nls_fit_tensor(gtab, data, mask) dt = time.time() - t0 print("This step took %f seconds to run" % dt) # ---------------------------------------------------------------- print('Compute tensor statistic from the fitted parameters...') # ---------------------------------------------------------------- evals = fw_params[..., :3] FA = dti.fractional_anisotropy(evals) MD = dti.mean_diffusivity(evals) F = fw_params[..., 12] # ---------------------------------------------------------------- print('Compute standard DTI for comparison...') # ---------------------------------------------------------------- dtimodel = dti.TensorModel(gtab) dtifit = dtimodel.fit(data, mask=mask) dti_FA = dtifit.fa dti_MD = dtifit.md # ----------------------------------------------------------------
def run(self, input_files, bvalues_files, bvectors_files, mask_files, b0_threshold=50.0, save_metrics=[], out_dir='', out_dt_tensor='dti_tensors.nii.gz', out_fa='fa.nii.gz', out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz', out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz', out_evec='evecs.nii.gz', out_eval='evals.nii.gz', out_dk_tensor="dki_tensors.nii.gz", out_mk="mk.nii.gz", out_ak="ak.nii.gz", out_rk="rk.nii.gz"): """ Workflow for Diffusion Kurtosis reconstruction and for computing DKI metrics. Performs a DKI reconstruction on the files by 'globing' ``input_files`` and saves the DKI metrics in a directory specified by ``out_dir``. Parameters ---------- input_files : string Path to the input volumes. This path may contain wildcards to process multiple inputs at once. bvalues_files : string Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. bvectors_files : string Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. mask_files : string Path to the input masks. This path may contain wildcards to use multiple masks at once. (default: No mask used) b0_threshold : float, optional Threshold used to find b=0 directions (default 0.0) save_metrics : variable string, optional List of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default [] (all)) out_dir : string, optional Output directory (default input file directory) out_dt_tensor : string, optional Name of the tensors volume to be saved (default: 'dti_tensors.nii.gz') out_dk_tensor : string, optional Name of the tensors volume to be saved (default 'dki_tensors.nii.gz') out_fa : string, optional Name of the fractional anisotropy volume to be saved (default 'fa.nii.gz') out_ga : string, optional Name of the geodesic anisotropy volume to be saved (default 'ga.nii.gz') out_rgb : string, optional Name of the color fa volume to be saved (default 'rgb.nii.gz') out_md : string, optional Name of the mean diffusivity volume to be saved (default 'md.nii.gz') out_ad : string, optional Name of the axial diffusivity volume to be saved (default 'ad.nii.gz') out_rd : string, optional Name of the radial diffusivity volume to be saved (default 'rd.nii.gz') out_mode : string, optional Name of the mode volume to be saved (default 'mode.nii.gz') out_evec : string, optional Name of the eigenvectors volume to be saved (default 'evecs.nii.gz') out_eval : string, optional Name of the eigenvalues to be saved (default 'evals.nii.gz') out_mk : string, optional Name of the mean kurtosis to be saved (default: 'mk.nii.gz') out_ak : string, optional Name of the axial kurtosis to be saved (default: 'ak.nii.gz') out_rk : string, optional Name of the radial kurtosis to be saved (default: 'rk.nii.gz') References ---------- .. [1] Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 65(3), 823-836 .. [2] Jensen, Jens H., Joseph A. Helpern, Anita Ramani, Hanzhang Lu, and Kyle Kaczynski. 2005. Diffusional Kurtosis Imaging: The Quantification of Non-Gaussian Water Diffusion by Means of Magnetic Resonance Imaging. MRM 53 (6):1432-40. """ io_it = self.get_io_iterator() for (dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, omode, oevecs, oevals, odk_tensor, omk, oak, ork) in io_it: logging.info('Computing DKI metrics for {0}'.format(dwi)) data, affine = load_nifti(dwi) if mask is not None: mask = nib.load(mask).get_data().astype(np.bool) dkfit, _ = self.get_fitted_tensor(data, mask, bval, bvec, b0_threshold) if not save_metrics: save_metrics = ['mk', 'rk', 'ak', 'fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec', 'eval', 'dt_tensor', 'dk_tensor'] evals, evecs, kt = split_dki_param(dkfit.model_params) FA = fractional_anisotropy(evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) if 'dt_tensor' in save_metrics: tensor_vals = lower_triangular(dkfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] save_nifti(otensor, tensor_vals_reordered.astype(np.float32), affine) if 'dk_tensor' in save_metrics: save_nifti(odk_tensor, dkfit.kt.astype(np.float32), affine) if 'fa' in save_metrics: save_nifti(ofa, FA.astype(np.float32), affine) if 'ga' in save_metrics: GA = geodesic_anisotropy(dkfit.evals) save_nifti(oga, GA.astype(np.float32), affine) if 'rgb' in save_metrics: RGB = color_fa(FA, dkfit.evecs) save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine) if 'md' in save_metrics: MD = mean_diffusivity(dkfit.evals) save_nifti(omd, MD.astype(np.float32), affine) if 'ad' in save_metrics: AD = axial_diffusivity(dkfit.evals) save_nifti(oad, AD.astype(np.float32), affine) if 'rd' in save_metrics: RD = radial_diffusivity(dkfit.evals) save_nifti(orad, RD.astype(np.float32), affine) if 'mode' in save_metrics: MODE = get_mode(dkfit.quadratic_form) save_nifti(omode, MODE.astype(np.float32), affine) if 'evec' in save_metrics: save_nifti(oevecs, dkfit.evecs.astype(np.float32), affine) if 'eval' in save_metrics: save_nifti(oevals, dkfit.evals.astype(np.float32), affine) if 'mk' in save_metrics: save_nifti(omk, dkfit.mk().astype(np.float32), affine) if 'ak' in save_metrics: save_nifti(oak, dkfit.ak().astype(np.float32), affine) if 'rk' in save_metrics: save_nifti(ork, dkfit.rk().astype(np.float32), affine) logging.info('DKI metrics saved in {0}'. format(os.path.dirname(oevals)))
def run(self, input_files, bvalues_files, bvectors_files, mask_files, b0_threshold=50, bvecs_tol=0.01, save_metrics=[], out_dir='', out_tensor='tensors.nii.gz', out_fa='fa.nii.gz', out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz', out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz', out_evec='evecs.nii.gz', out_eval='evals.nii.gz'): """ Workflow for tensor reconstruction and for computing DTI metrics. using Weighted Least-Squares. Performs a tensor reconstruction on the files by 'globing' ``input_files`` and saves the DTI metrics in a directory specified by ``out_dir``. Parameters ---------- input_files : string Path to the input volumes. This path may contain wildcards to process multiple inputs at once. bvalues_files : string Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. bvectors_files : string Path to the bvectors files. This path may contain wildcards to use multiple bvectors files at once. mask_files : string Path to the input masks. This path may contain wildcards to use multiple masks at once. (default: No mask used) b0_threshold : float, optional Threshold used to find b=0 directions (default 0.0) bvecs_tol : float, optional Threshold used to check that norm(bvec) = 1 +/- bvecs_tol b-vectors are unit vectors (default 0.01) save_metrics : variable string, optional List of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default [] (all)) out_dir : string, optional Output directory (default input file directory) out_tensor : string, optional Name of the tensors volume to be saved (default 'tensors.nii.gz') out_fa : string, optional Name of the fractional anisotropy volume to be saved (default 'fa.nii.gz') out_ga : string, optional Name of the geodesic anisotropy volume to be saved (default 'ga.nii.gz') out_rgb : string, optional Name of the color fa volume to be saved (default 'rgb.nii.gz') out_md : string, optional Name of the mean diffusivity volume to be saved (default 'md.nii.gz') out_ad : string, optional Name of the axial diffusivity volume to be saved (default 'ad.nii.gz') out_rd : string, optional Name of the radial diffusivity volume to be saved (default 'rd.nii.gz') out_mode : string, optional Name of the mode volume to be saved (default 'mode.nii.gz') out_evec : string, optional Name of the eigenvectors volume to be saved (default 'evecs.nii.gz') out_eval : string, optional Name of the eigenvalues to be saved (default 'evals.nii.gz') References ---------- .. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103, 247-254. .. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. Journal of Magnetic Resonance 111, 209-219. .. [3] Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust estimation of tensors by outlier rejection. MRM 53: 1088-1095 .. [4] hung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33, 531-541. """ io_it = self.get_io_iterator() for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \ omode, oevecs, oevals in io_it: logging.info('Computing DTI metrics for {0}'.format(dwi)) data, affine = load_nifti(dwi) if mask is not None: mask = nib.load(mask).get_data().astype(np.bool) tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec, b0_threshold, bvecs_tol) if not save_metrics: save_metrics = ['fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec', 'eval', 'tensor'] FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) if 'tensor' in save_metrics: tensor_vals = lower_triangular(tenfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] save_nifti(otensor, tensor_vals_reordered.astype(np.float32), affine) if 'fa' in save_metrics: save_nifti(ofa, FA.astype(np.float32), affine) if 'ga' in save_metrics: GA = geodesic_anisotropy(tenfit.evals) save_nifti(oga, GA.astype(np.float32), affine) if 'rgb' in save_metrics: RGB = color_fa(FA, tenfit.evecs) save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine) if 'md' in save_metrics: MD = mean_diffusivity(tenfit.evals) save_nifti(omd, MD.astype(np.float32), affine) if 'ad' in save_metrics: AD = axial_diffusivity(tenfit.evals) save_nifti(oad, AD.astype(np.float32), affine) if 'rd' in save_metrics: RD = radial_diffusivity(tenfit.evals) save_nifti(orad, RD.astype(np.float32), affine) if 'mode' in save_metrics: MODE = get_mode(tenfit.quadratic_form) save_nifti(omode, MODE.astype(np.float32), affine) if 'evec' in save_metrics: save_nifti(oevecs, tenfit.evecs.astype(np.float32), affine) if 'eval' in save_metrics: save_nifti(oevals, tenfit.evals.astype(np.float32), affine) dname_ = os.path.dirname(oevals) if dname_ == '': logging.info('DTI metrics saved in current directory') else: logging.info( 'DTI metrics saved in {0}'.format(dname_))
def tens_mod_fa_est(gtab_file, dwi_file, B0_mask): """ Estimate a tensor FA image to use for registrations. Parameters ---------- gtab_file : str File path to pickled DiPy gradient table object. dwi_file : str File path to diffusion weighted image. B0_mask : str File path to B0 brain mask. Returns ------- fa_path : str File path to FA Nifti1Image. B0_mask : str File path to B0 brain mask Nifti1Image. gtab_file : str File path to pickled DiPy gradient table object. dwi_file : str File path to diffusion weighted Nifti1Image. fa_md_path : str File path to FA/MD mask Nifti1Image. """ import os from dipy.io import load_pickle from dipy.reconst.dti import TensorModel from dipy.reconst.dti import fractional_anisotropy, mean_diffusivity gtab = load_pickle(gtab_file) data = nib.load(dwi_file, mmap=False).get_fdata(dtype=np.float32) print("Generating tensor FA image to use for registrations...") nodif_B0_img = nib.load(B0_mask, mmap=False) nodif_B0_mask_data = nodif_B0_img.get_fdata().astype("bool") model = TensorModel(gtab) mod = model.fit(data, nodif_B0_mask_data) FA = fractional_anisotropy(mod.evals) # MD = mean_diffusivity(mod.evals) # FA_MD = np.logical_or( # FA >= 0.2, (np.logical_and( # FA >= 0.08, MD >= 0.0011))) # FA_MD[np.isnan(FA_MD)] = 0 FA = np.nan_to_num(np.asarray(FA.astype('float32'))) fa_path = f"{os.path.dirname(B0_mask)}{'/tensor_fa.nii.gz'}" nib.save(nib.Nifti1Image(FA, nodif_B0_img.affine), fa_path) # md_path = f"{os.path.dirname(B0_mask)}{'/tensor_md.nii.gz'}" # nib.save( # nib.Nifti1Image( # MD.astype( # np.float32), # nodif_B0_img.affine), # md_path) nodif_B0_img.uncache() del FA return fa_path, B0_mask, gtab_file, dwi_file
def main(): parser = _build_args_parser() args = parser.parse_args() if not args.not_all: args.fa = args.fa or 'fa.nii.gz' args.ga = args.ga or 'ga.nii.gz' args.rgb = args.rgb or 'rgb.nii.gz' args.md = args.md or 'md.nii.gz' args.ad = args.ad or 'ad.nii.gz' args.rd = args.rd or 'rd.nii.gz' args.mode = args.mode or 'mode.nii.gz' args.norm = args.norm or 'tensor_norm.nii.gz' args.tensor = args.tensor or 'tensor.nii.gz' args.evecs = args.evecs or 'tensor_evecs.nii.gz' args.evals = args.evals or 'tensor_evals.nii.gz' args.residual = args.residual or 'dti_residual.nii.gz' args.p_i_signal =\ args.p_i_signal or 'physically_implausible_signals_mask.nii.gz' args.pulsation = args.pulsation or 'pulsation_and_misalignment.nii.gz' outputs = [ args.fa, args.ga, args.rgb, args.md, args.ad, args.rd, args.mode, args.norm, args.tensor, args.evecs, args.evals, args.residual, args.p_i_signal, args.pulsation ] if args.not_all and not any(outputs): parser.error('When using --not_all, you need to specify at least ' + 'one metric to output.') assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs], [args.mask]) assert_outputs_exist(parser, args, outputs) img = nib.load(args.input) data = img.get_data() affine = img.get_affine() if args.mask is None: mask = None else: mask = nib.load(args.mask).get_data().astype(np.bool) # Validate bvals and bvecs logging.info('Tensor estimation with the %s method...', args.method) bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs) if not is_normalized_bvecs(bvecs): logging.warning('Your b-vectors do not seem normalized...') bvecs = normalize_bvecs(bvecs) check_b0_threshold(args, bvals.min()) gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min()) # Get tensors if args.method == 'restore': sigma = ne.estimate_sigma(data) tenmodel = TensorModel(gtab, fit_method=args.method, sigma=sigma, min_signal=_get_min_nonzero_signal(data)) else: tenmodel = TensorModel(gtab, fit_method=args.method, min_signal=_get_min_nonzero_signal(data)) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) if args.tensor: # Get the Tensor values and format them for visualisation # in the Fibernavigator. tensor_vals = lower_triangular(tenfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] fiber_tensors = nib.Nifti1Image( tensor_vals_reordered.astype(np.float32), affine) nib.save(fiber_tensors, args.tensor) if args.fa: fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img, args.fa) if args.ga: GA = geodesic_anisotropy(tenfit.evals) GA[np.isnan(GA)] = 0 ga_img = nib.Nifti1Image(GA.astype(np.float32), affine) nib.save(ga_img, args.ga) if args.rgb: RGB = color_fa(FA, tenfit.evecs) rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine) nib.save(rgb_img, args.rgb) if args.md: MD = mean_diffusivity(tenfit.evals) md_img = nib.Nifti1Image(MD.astype(np.float32), affine) nib.save(md_img, args.md) if args.ad: AD = axial_diffusivity(tenfit.evals) ad_img = nib.Nifti1Image(AD.astype(np.float32), affine) nib.save(ad_img, args.ad) if args.rd: RD = radial_diffusivity(tenfit.evals) rd_img = nib.Nifti1Image(RD.astype(np.float32), affine) nib.save(rd_img, args.rd) if args.mode: # Compute tensor mode inter_mode = dipy_mode(tenfit.quadratic_form) # Since the mode computation can generate NANs when not masked, # we need to remove them. non_nan_indices = np.isfinite(inter_mode) mode = np.zeros(inter_mode.shape) mode[non_nan_indices] = inter_mode[non_nan_indices] mode_img = nib.Nifti1Image(mode.astype(np.float32), affine) nib.save(mode_img, args.mode) if args.norm: NORM = norm(tenfit.quadratic_form) norm_img = nib.Nifti1Image(NORM.astype(np.float32), affine) nib.save(norm_img, args.norm) if args.evecs: evecs = tenfit.evecs.astype(np.float32) evecs_img = nib.Nifti1Image(evecs, affine) nib.save(evecs_img, args.evecs) # save individual e-vectors also e1_img = nib.Nifti1Image(evecs[..., 0], affine) e2_img = nib.Nifti1Image(evecs[..., 1], affine) e3_img = nib.Nifti1Image(evecs[..., 2], affine) nib.save(e1_img, add_filename_suffix(args.evecs, '_v1')) nib.save(e2_img, add_filename_suffix(args.evecs, '_v2')) nib.save(e3_img, add_filename_suffix(args.evecs, '_v3')) if args.evals: evals = tenfit.evals.astype(np.float32) evals_img = nib.Nifti1Image(evals, affine) nib.save(evals_img, args.evals) # save individual e-values also e1_img = nib.Nifti1Image(evals[..., 0], affine) e2_img = nib.Nifti1Image(evals[..., 1], affine) e3_img = nib.Nifti1Image(evals[..., 2], affine) nib.save(e1_img, add_filename_suffix(args.evals, '_e1')) nib.save(e2_img, add_filename_suffix(args.evals, '_e2')) nib.save(e3_img, add_filename_suffix(args.evals, '_e3')) if args.p_i_signal: S0 = np.mean(data[..., gtab.b0s_mask], axis=-1, keepdims=True) DWI = data[..., ~gtab.b0s_mask] pis_mask = np.max(S0 < DWI, axis=-1) if args.mask is not None: pis_mask *= mask pis_img = nib.Nifti1Image(pis_mask.astype(np.int16), affine) nib.save(pis_img, args.p_i_signal) if args.pulsation: STD = np.std(data[..., ~gtab.b0s_mask], axis=-1) if args.mask is not None: STD *= mask std_img = nib.Nifti1Image(STD.astype(np.float32), affine) nib.save(std_img, add_filename_suffix(args.pulsation, '_std_dwi')) if np.sum(gtab.b0s_mask) <= 1: logger.info('Not enough b=0 images to output standard ' 'deviation map') else: if len(np.where(gtab.b0s_mask)) == 2: logger.info('Only two b=0 images. Be careful with the ' 'interpretation of this std map') STD = np.std(data[..., gtab.b0s_mask], axis=-1) if args.mask is not None: STD *= mask std_img = nib.Nifti1Image(STD.astype(np.float32), affine) nib.save(std_img, add_filename_suffix(args.pulsation, '_std_b0')) if args.residual: if args.mask is None: logger.info("Outlier detection will not be performed, since no " "mask was provided.") S0 = np.mean(data[..., gtab.b0s_mask], axis=-1) data_p = tenfit.predict(gtab, S0) R = np.mean(np.abs(data_p[..., ~gtab.b0s_mask] - data[..., ~gtab.b0s_mask]), axis=-1) if args.mask is not None: R *= mask R_img = nib.Nifti1Image(R.astype(np.float32), affine) nib.save(R_img, args.residual) R_k = np.zeros(data.shape[-1]) # mean residual per DWI std = np.zeros(data.shape[-1]) # std residual per DWI q1 = np.zeros(data.shape[-1]) # first quartile q3 = np.zeros(data.shape[-1]) # third quartile iqr = np.zeros(data.shape[-1]) # interquartile for i in range(data.shape[-1]): x = np.abs(data_p[..., i] - data[..., i])[mask] R_k[i] = np.mean(x) std[i] = np.std(x) q3[i], q1[i] = np.percentile(x, [75, 25]) iqr[i] = q3[i] - q1[i] # Outliers are observations that fall below Q1 - 1.5(IQR) or # above Q3 + 1.5(IQR) We check if a volume is an outlier only if # we have a mask, else we are biased. if args.mask is not None and R_k[i] < (q1[i] - 1.5 * iqr[i]) \ or R_k[i] > (q3[i] + 1.5 * iqr[i]): logger.warning( 'WARNING: Diffusion-Weighted Image i=%s is an ' 'outlier', i) residual_basename, _ = split_name_with_nii(args.residual) res_stats_basename = residual_basename + ".npy" np.save(add_filename_suffix(res_stats_basename, "_mean_residuals"), R_k) np.save(add_filename_suffix(res_stats_basename, "_q1_residuals"), q1) np.save(add_filename_suffix(res_stats_basename, "_q3_residuals"), q3) np.save(add_filename_suffix(res_stats_basename, "_iqr_residuals"), iqr) np.save(add_filename_suffix(res_stats_basename, "_std_residuals"), std) # To do: I would like to have an error bar with q1 and q3. # Now, q1 acts as a std dwi = np.arange(R_k[~gtab.b0s_mask].shape[0]) plt.bar(dwi, R_k[~gtab.b0s_mask], 0.75, color='y', yerr=q1[~gtab.b0s_mask]) plt.xlabel('DW image') plt.ylabel('Mean residuals +- q1') plt.title('Residuals') plt.savefig(residual_basename + '_residuals_stats.png')
def prepare_data_for_actors(dwi_filename, bvals_filename, bvecs_filename, target_template_filename, slices_choice, shells=None): # Load and prepare the data dwi_img = nib.load(dwi_filename) dwi_data = dwi_img.get_data() dwi_affine = dwi_img.get_affine() bvals, bvecs = read_bvals_bvecs(bvals_filename, bvecs_filename) target_template_img = nib.load(target_template_filename) target_template_data = target_template_img.get_data() target_template_affine = target_template_img.affine mask_data = np.zeros(target_template_data.shape) mask_data[target_template_data > 0] = 1 # Prepare mask for tensors fit x_slice, y_slice, z_slice = slices_choice mask_data = prepare_slices_mask(mask_data, x_slice, y_slice, z_slice) # Extract B0 gtab = gradient_table(bvals, normalize_bvecs(bvecs), b0_threshold=10) b0_idx = np.where(gtab.b0s_mask)[0] mean_b0 = np.mean(dwi_data[..., b0_idx], axis=3, dtype=dwi_data.dtype) if shells: indices = [get_shell_indices(bvals, shell) for shell in shells] indices = np.sort(np.hstack(indices)) if len(indices) < 1: raise ValueError( 'There are no volumes that have the supplied b-values.') shell_data = np.zeros((dwi_data.shape[:-1] + (len(indices), )), dtype=dwi_data.dtype) shell_bvecs = np.zeros((len(indices), 3)) shell_bvals = np.zeros((len(indices), )) for i, indice in enumerate(indices): shell_data[..., i] = dwi_data[..., indice] shell_bvals[i] = bvals[indice] shell_bvecs[i, :] = bvecs[indice, :] else: shell_data = dwi_data shell_bvals = bvals shell_bvecs = bvecs # Register the DWI data to the template transformed_dwi, transformation = register_image( target_template_data, target_template_affine, mean_b0, dwi_affine, transformation_type='rigid', dwi=shell_data) # Rotate gradients rotated_bvecs = np.dot(shell_bvecs, transformation[0:3, 0:3]) rotated_bvecs = normalize_bvecs(rotated_bvecs) rotated_gtab = gradient_table(shell_bvals, rotated_bvecs, b0_threshold=10) # Get tensors tensor_model = TensorModel(rotated_gtab, fit_method='LS') tensor_fit = tensor_model.fit(transformed_dwi, mask_data) # Get FA fa_map = np.clip(fractional_anisotropy(tensor_fit.evals), 0, 1) # Get eigen vals/vecs evals = np.zeros(target_template_data.shape + (1, )) evals[..., 0] = tensor_fit.evals[..., 0] / np.max(tensor_fit.evals[..., 0]) evecs = np.zeros(target_template_data.shape + (1, 3)) evecs[:, :, :, 0, :] = tensor_fit.evecs[..., 0] return fa_map, evals, evecs
def nonlinfit_fn(dwi, bvecs, bvals, base_name): import nibabel as nb import numpy as np import os.path as op import dipy.reconst.dti as dti from dipy.core.gradients import GradientTable dwi_img = nb.load(dwi) dwi_data = dwi_img.get_data() dwi_affine = dwi_img.get_affine() from dipy.segment.mask import median_otsu b0_mask, mask = median_otsu(dwi_data, 2, 4) # Mask the data so that tensors are not fit for # unnecessary voxels mask_img = nb.Nifti1Image(mask.astype(np.float32), dwi_affine) b0_imgs = nb.Nifti1Image(b0_mask.astype(np.float32), dwi_affine) b0_img = nb.four_to_three(b0_imgs)[0] out_mask_name = op.abspath(base_name + '_binary_mask.nii.gz') out_b0_name = op.abspath(base_name + '_b0_mask.nii.gz') nb.save(mask_img, out_mask_name) nb.save(b0_img, out_b0_name) # Load the gradient strengths and directions bvals = np.loadtxt(bvals) gradients = np.loadtxt(bvecs).T # Place in Dipy's preferred format gtab = GradientTable(gradients) gtab.bvals = bvals # Fit the tensors to the data tenmodel = dti.TensorModel(gtab, fit_method="NLLS") tenfit = tenmodel.fit(dwi_data, mask) # Calculate the fit, fa, and md of each voxel's tensor tensor_data = tenfit.lower_triangular() print('Computing anisotropy measures (FA, MD, RGB)') from dipy.reconst.dti import fractional_anisotropy, color_fa evals = tenfit.evals.astype(np.float32) FA = fractional_anisotropy(np.abs(evals)) FA = np.clip(FA, 0, 1) MD = dti.mean_diffusivity(np.abs(evals)) norm = dti.norm(tenfit.quadratic_form) RGB = color_fa(FA, tenfit.evecs) evecs = tenfit.evecs.astype(np.float32) mode = tenfit.mode.astype(np.float32) # Write tensor as a 4D Nifti image with the original affine tensor_fit_img = nb.Nifti1Image(tensor_data.astype(np.float32), dwi_affine) mode_img = nb.Nifti1Image(mode.astype(np.float32), dwi_affine) norm_img = nb.Nifti1Image(norm.astype(np.float32), dwi_affine) FA_img = nb.Nifti1Image(FA.astype(np.float32), dwi_affine) evecs_img = nb.Nifti1Image(evecs, dwi_affine) evals_img = nb.Nifti1Image(evals, dwi_affine) rgb_img = nb.Nifti1Image(np.array(255 * RGB, 'uint8'), dwi_affine) MD_img = nb.Nifti1Image(MD.astype(np.float32), dwi_affine) out_tensor_file = op.abspath(base_name + "_tensor.nii.gz") out_mode_file = op.abspath(base_name + "_mode.nii.gz") out_fa_file = op.abspath(base_name + "_fa.nii.gz") out_norm_file = op.abspath(base_name + "_norm.nii.gz") out_evals_file = op.abspath(base_name + "_evals.nii.gz") out_evecs_file = op.abspath(base_name + "_evecs.nii.gz") out_rgb_fa_file = op.abspath(base_name + "_rgb_fa.nii.gz") out_md_file = op.abspath(base_name + "_md.nii.gz") nb.save(rgb_img, out_rgb_fa_file) nb.save(norm_img, out_norm_file) nb.save(mode_img, out_mode_file) nb.save(tensor_fit_img, out_tensor_file) nb.save(evecs_img, out_evecs_file) nb.save(evals_img, out_evals_file) nb.save(FA_img, out_fa_file) nb.save(MD_img, out_md_file) print('Tensor fit image saved as {i}'.format(i=out_tensor_file)) print('FA image saved as {i}'.format(i=out_fa_file)) print('MD image saved as {i}'.format(i=out_md_file)) return out_tensor_file, out_fa_file, out_md_file, \ out_evecs_file, out_evals_file, out_rgb_fa_file, out_norm_file, \ out_mode_file, out_mask_name, out_b0_name
def run(self, input_files, bvalues, bvectors, mask_files, b0_threshold=0.0, save_metrics=[], out_dir='', out_tensor='tensors.nii.gz', out_fa='fa.nii.gz', out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz', out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz', out_evec='evecs.nii.gz', out_eval='evals.nii.gz'): """ Workflow for tensor reconstruction and for computing DTI metrics. Performs a tensor reconstruction on the files by 'globing' ``input_files`` and saves the DTI metrics in a directory specified by ``out_dir``. Parameters ---------- input_files : string Path to the input volumes. This path may contain wildcards to process multiple inputs at once. bvalues : string Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. bvectors : string Path to the bvalues files. This path may contain wildcards to use multiple bvalues files at once. mask_files : string Path to the input masks. This path may contain wildcards to use multiple masks at once. (default: No mask used) b0_threshold : float, optional Threshold used to find b=0 directions (default 0.0) save_metrics : variable string, optional List of metrics to save. Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval (default [] (all)) out_dir : string, optional Output directory (default input file directory) out_tensor : string, optional Name of the tensors volume to be saved (default 'tensors.nii.gz') out_fa : string, optional Name of the fractional anisotropy volume to be saved (default 'fa.nii.gz') out_ga : string, optional Name of the geodesic anisotropy volume to be saved (default 'ga.nii.gz') out_rgb : string, optional Name of the color fa volume to be saved (default 'rgb.nii.gz') out_md : string, optional Name of the mean diffusivity volume to be saved (default 'md.nii.gz') out_ad : string, optional Name of the axial diffusivity volume to be saved (default 'ad.nii.gz') out_rd : string, optional Name of the radial diffusivity volume to be saved (default 'rd.nii.gz') out_mode : string, optional Name of the mode volume to be saved (default 'mode.nii.gz') out_evec : string, optional Name of the eigenvectors volume to be saved (default 'evecs.nii.gz') out_eval : string, optional Name of the eigenvalues to be saved (default 'evals.nii.gz') """ io_it = self.get_io_iterator() for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \ omode, oevecs, oevals in io_it: logging.info('Computing DTI metrics for {0}'.format(dwi)) img = nib.load(dwi) data = img.get_data() affine = img.get_affine() if mask is None: mask = None else: mask = nib.load(mask).get_data().astype(np.bool) tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec, b0_threshold) if not save_metrics: save_metrics = ['fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec', 'eval', 'tensor'] FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) if 'tensor' in save_metrics: tensor_vals = lower_triangular(tenfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] fiber_tensors = nib.Nifti1Image(tensor_vals_reordered.astype( np.float32), affine) nib.save(fiber_tensors, otensor) if 'fa' in save_metrics: fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img, ofa) if 'ga' in save_metrics: GA = geodesic_anisotropy(tenfit.evals) ga_img = nib.Nifti1Image(GA.astype(np.float32), affine) nib.save(ga_img, oga) if 'rgb' in save_metrics: RGB = color_fa(FA, tenfit.evecs) rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine) nib.save(rgb_img, orgb) if 'md' in save_metrics: MD = mean_diffusivity(tenfit.evals) md_img = nib.Nifti1Image(MD.astype(np.float32), affine) nib.save(md_img, omd) if 'ad' in save_metrics: AD = axial_diffusivity(tenfit.evals) ad_img = nib.Nifti1Image(AD.astype(np.float32), affine) nib.save(ad_img, oad) if 'rd' in save_metrics: RD = radial_diffusivity(tenfit.evals) rd_img = nib.Nifti1Image(RD.astype(np.float32), affine) nib.save(rd_img, orad) if 'mode' in save_metrics: MODE = get_mode(tenfit.quadratic_form) mode_img = nib.Nifti1Image(MODE.astype(np.float32), affine) nib.save(mode_img, omode) if 'evec' in save_metrics: evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine) nib.save(evecs_img, oevecs) if 'eval' in save_metrics: evals_img = nib.Nifti1Image(tenfit.evals.astype(np.float32), affine) nib.save(evals_img, oevals) logging.info('DTI metrics saved in {0}'. format(os.path.dirname(oevals)))
def test_fa_of_zero(): evals = np.zeros((4, 3)) fa = fractional_anisotropy(evals) assert_array_equal(fa, 0)
def compute_tensors(self, dti_vol, atlas_file, gtab): # WGR:TODO figure out how to organize tensor options and formats # WGR:TODO figure out how to deal with files on disk vs. in workspace """ Takes registered DTI image and produces tensors **Positional Arguments:** dti_vol: - Registered DTI volume, from workspace. atlas_file: - File containing an atlas (or brain mask). gtab: - Structure containing dipy formatted bval/bvec information """ labeldata = nib.load(atlas_file) label = labeldata.get_data() """ Create a brain mask. Here we just threshold labels. """ mask = (label > 0) gtab.info print data.shape """ For the constrained spherical deconvolution we need to estimate the response function (see :ref:`example_reconst_csd`) and create a model. """ response, ratio = auto_response(gtab, dti_vol, roi_radius=10, fa_thr=0.7) csd_model = ConstrainedSphericalDeconvModel(gtab, response) """ Next, we use ``peaks_from_model`` to fit the data and calculated the fiber directions in all voxels. """ sphere = get_sphere('symmetric724') csd_peaks = peaks_from_model(model=csd_model, data=data, sphere=sphere, mask=mask, relative_peak_threshold=.5, min_separation_angle=25, parallel=True) """ For the tracking part, we will use ``csd_model`` fiber directions but stop tracking where fractional anisotropy (FA) is low (< 0.1). To derive the FA, used as a stopping criterion, we need to fit a tensor model first. Here, we use weighted least squares (WLS). """ print 'tensors...' tensor_model = TensorModel(gtab, fit_method='WLS') tensor_fit = tensor_model.fit(data, mask) FA = fractional_anisotropy(tensor_fit.evals) """ In order for the stopping values to be used with our tracking algorithm we need to have the same dimensions as the ``csd_peaks.peak_values``. For this reason, we can assign the same FA value to every peak direction in the same voxel in the following way. """ stopping_values = np.zeros(csd_peaks.peak_values.shape) stopping_values[:] = FA[..., None] print datetime.now() - startTime pass
from dipy.io.pickles import save_pickle, load_pickle from time import time threshold = 0.75 from dipy.data import get_sphere sphere = get_sphere('symmetric724') dname = 'SNR20/' if __name__ == '__main__': data, affine, gtab = get_test_hardi(snr=20, denoised=0) mask = get_test_mask() tenmodel = TensorModel(gtab) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 nib.save(nib.Nifti1Image(FA.astype('float32'), affine), 'FA.nii.gz') for i in range(27) : print 'White matter bundle: ', i wm_mask = get_test_wm_mask(i) print(FA[wm_mask].max()) indicesAniso = np.where(np.logical_and(FA > threshold, wm_mask)) print ' Response function' S0s = data[indicesAniso][:, np.nonzero(gtab.b0s_mask)[0]] S0 = np.mean(S0s) if S0 == 0 : S0 = 1
def getFAfromSix(sixArr, axis=-1): mat = six2mat(sixArr) eig = np.linalg.eig(mat)[0] fa = fractional_anisotropy(eig) return fa