def test_identity_feature(): # Test subclassing Feature class IdentityFeature(dipymetric.Feature): def __init__(self): super(IdentityFeature, self).__init__(is_order_invariant=False) def infer_shape(self, streamline): return streamline.shape def extract(self, streamline): return streamline for feature in [dipymetric.IdentityFeature(), IdentityFeature()]: for s in [s1, s2, s3, s4]: # Test method infer_shape assert_equal(feature.infer_shape(s), s.shape) # Test method extract features = feature.extract(s) assert_equal(features.shape, s.shape) assert_array_equal(features, s) # This feature type is not order invariant assert_false(feature.is_order_invariant) for s in [s1, s2, s3, s4]: features = feature.extract(s) features_flip = feature.extract(s[::-1]) assert_array_equal(features_flip, s[::-1]) assert_true(np.any(np.not_equal(features, features_flip)))
def test_metric_minimum_average_direct_flip(): feature = dipymetric.IdentityFeature() class MinimumAverageDirectFlipMetric(dipymetric.Metric): def __init__(self, feature): super(MinimumAverageDirectFlipMetric, self).__init__(feature=feature) @property def is_order_invariant(self): return True # Ordering is handled in the distance computation def are_compatible(self, shape1, shape2): return shape1[0] == shape2[0] def dist(self, v1, v2): def average_euclidean(x, y): return np.mean(norm(x - y, axis=1)) dist_direct = average_euclidean(v1, v2) dist_flipped = average_euclidean(v1, v2[::-1]) return min(dist_direct, dist_flipped) for metric in [ MinimumAverageDirectFlipMetric(feature), dipymetric.MinimumAverageDirectFlipMetric(feature) ]: # Test special cases of the MDF distance. assert_equal(metric.dist(s, s), 0.) assert_equal(metric.dist(s, s[::-1]), 0.) # Translation offset = np.array([0.8, 1.3, 5], dtype=dtype) assert_almost_equal(metric.dist(s, s + offset), norm(offset), 5) # Scaling M_scaling = np.diag([1.2, 2.8, 3]).astype(dtype) s_mean = np.mean(s, axis=0) s_zero_mean = s - s_mean s_scaled = np.dot(M_scaling, s_zero_mean.T).T + s_mean d = np.mean(norm((np.diag(M_scaling) - 1) * s_zero_mean, axis=1)) assert_almost_equal(metric.dist(s, s_scaled), d, 5) # Rotation from dipy.core.geometry import rodrigues_axis_rotation rot_axis = np.array([1, 2, 3], dtype=dtype) M_rotation = rodrigues_axis_rotation(rot_axis, 60.).astype(dtype) s_mean = np.mean(s, axis=0) s_zero_mean = s - s_mean s_rotated = np.dot(M_rotation, s_zero_mean.T).T + s_mean opposite = norm(np.cross(rot_axis, s_zero_mean), axis=1) / norm(rot_axis) distances = np.sqrt(2 * opposite**2 * (1 - np.cos(60. * np.pi / 180.))).astype(dtype) d = np.mean(distances) assert_almost_equal(metric.dist(s, s_rotated), d, 5) # All possible pairs for s1, s2 in itertools.product(*[streamlines] * 2): # Extract features since metric doesn't work # directly on streamlines f1 = metric.feature.extract(s1) f2 = metric.feature.extract(s2) # Test method are_compatible same_nb_points = f1.shape[0] == f2.shape[0] assert_equal(metric.are_compatible(f1.shape, f2.shape), same_nb_points) # Test method dist if features are compatible if metric.are_compatible(f1.shape, f2.shape): distance = metric.dist(f1, f2) if np.all(f1 == f2): assert_equal(distance, 0.) assert_almost_equal(distance, dipymetric.dist(metric, s1, s2)) assert_almost_equal(distance, dipymetric.mdf(s1, s2)) assert_true(distance >= 0.) # This metric type is order invariant assert_true(metric.is_order_invariant) # All possible pairs for s1, s2 in itertools.product(*[streamlines] * 2): f1 = metric.feature.extract(s1) f2 = metric.feature.extract(s2) if not metric.are_compatible(f1.shape, f2.shape): continue f1_flip = metric.feature.extract(s1[::-1]) f2_flip = metric.feature.extract(s2[::-1]) distance = metric.dist(f1, f2) assert_almost_equal(metric.dist(f1_flip, f2_flip), distance) if not np.all(f1_flip == f2_flip): assert_true(np.allclose(metric.dist(f1, f2_flip), distance)) assert_true(np.allclose(metric.dist(f1_flip, f2), distance))