Exemple #1
0
def prep_tissues(nodif_B0_mask, gm_in_dwi, vent_csf_in_dwi, wm_in_dwi, tiss_class, cmc_step_size=0.2):
    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle
    from dipy.tracking.local import ActTissueClassifier, CmcTissueClassifier, BinaryTissueClassifier
    # Loads mask and ensures it's a true binary mask
    mask_img = nib.load(nodif_B0_mask)
    # Load tissue maps and prepare tissue classifier
    gm_mask = nib.load(gm_in_dwi)
    gm_mask_data = gm_mask.get_fdata()
    wm_mask = nib.load(wm_in_dwi)
    wm_mask_data = wm_mask.get_fdata()
    if tiss_class == 'act':
        vent_csf_in_dwi = nib.load(vent_csf_in_dwi)
        vent_csf_in_dwi_data = vent_csf_in_dwi.get_fdata()
        background = np.ones(mask_img.shape)
        background[(gm_mask_data + wm_mask_data + vent_csf_in_dwi_data) > 0] = 0
        include_map = gm_mask_data
        include_map[background > 0] = 1
        exclude_map = vent_csf_in_dwi_data
        tiss_classifier = ActTissueClassifier(include_map, exclude_map)
    elif tiss_class == 'bin':
        wm_in_dwi_data = nib.load(wm_in_dwi).get_fdata().astype('bool')
        tiss_classifier = BinaryTissueClassifier(wm_in_dwi_data)
    elif tiss_class == 'cmc':
        vent_csf_in_dwi = nib.load(vent_csf_in_dwi)
        vent_csf_in_dwi_data = vent_csf_in_dwi.get_fdata()
        voxel_size = np.average(wm_mask.get_header()['pixdim'][1:4])
        tiss_classifier = CmcTissueClassifier.from_pve(wm_mask_data, gm_mask_data, vent_csf_in_dwi_data,
                                                       step_size=cmc_step_size, average_voxel_size=voxel_size)
    else:
        raise ValueError("%s%s%s" % ('Error: tissuer classification method: ', tiss_class, 'not found'))

    return tiss_classifier
def test_binary_tissue_classifier():
    """This tests that the binary tissue classifier returns expected
     tissue types.
    """

    mask = np.random.random((4, 4, 4))
    mask[mask < 0.4] = 0.0

    btc_boolean = BinaryTissueClassifier(mask > 0)
    btc_float64 = BinaryTissueClassifier(mask)

    # test voxel center
    for ind in ndindex(mask.shape):
        pts = np.array(ind, dtype='float64')
        state_boolean = btc_boolean.check_point(pts)
        state_float64 = btc_float64.check_point(pts)
        if mask[ind] > 0:
            npt.assert_equal(state_boolean, TissueTypes.TRACKPOINT)
            npt.assert_equal(state_float64, TissueTypes.TRACKPOINT)
        else:
            npt.assert_equal(state_boolean, TissueTypes.ENDPOINT)
            npt.assert_equal(state_float64, TissueTypes.ENDPOINT)

    # test random points in voxel
    for ind in ndindex(mask.shape):
        for _ in range(50):
            pts = np.array(ind, dtype='float64') + np.random.random(3) - 0.5
            state_boolean = btc_boolean.check_point(pts)
            state_float64 = btc_float64.check_point(pts)
            if mask[ind] > 0:
                npt.assert_equal(state_boolean, TissueTypes.TRACKPOINT)
                npt.assert_equal(state_float64, TissueTypes.TRACKPOINT)
            else:
                npt.assert_equal(state_boolean, TissueTypes.ENDPOINT)
                npt.assert_equal(state_float64, TissueTypes.ENDPOINT)

    # test outside points
    outside_pts = [[100, 100, 100], [0, -1, 1], [0, 10, 2], [0, 0.5, -0.51],
                   [0, -0.51, 0.1], [4, 0, 0]]
    for pts in outside_pts:
        pts = np.array(pts, dtype='float64')
        state_boolean = btc_boolean.check_point(pts)
        state_float64 = btc_float64.check_point(pts)
        npt.assert_equal(state_boolean, TissueTypes.OUTSIDEIMAGE)
        npt.assert_equal(state_float64, TissueTypes.OUTSIDEIMAGE)
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()
    for param in ['theta', 'curvature']:
        # Default was removed for consistency.
        if param not in args:
            setattr(args, param, None)

    assert_inputs_exist(parser, [args.sh_file, args.seed_file, args.mask_file])
    assert_outputs_exists(parser, args, [args.output_file])

    np.random.seed(args.seed)

    mask_img = nib.load(args.mask_file)
    mask_data = mask_img.get_data()

    seeds = random_seeds_from_mask(
        nib.load(args.seed_file).get_data(),
        seeds_count=args.nts if 'nts' in args else args.npv,
        seed_count_per_voxel='nts' not in args)

    # Tracking is performed in voxel space
    streamlines = LocalTracking(_get_direction_getter(args, mask_data),
                                BinaryTissueClassifier(mask_data),
                                seeds,
                                np.eye(4),
                                step_size=args.step_size,
                                max_cross=1,
                                maxlen=int(args.max_len / args.step_size) + 1,
                                fixedstep=True,
                                return_all=True)

    filtered_streamlines = (s for s in streamlines
                            if args.min_len <= length(s) <= args.max_len)
    if args.compress_streamlines:
        filtered_streamlines = (compress_streamlines(s, args.tolerance_error)
                                for s in filtered_streamlines)

    tractogram = LazyTractogram(lambda: filtered_streamlines,
                                affine_to_rasmm=mask_img.affine)

    # Header with the affine/shape from mask image
    header = {
        Field.VOXEL_TO_RASMM: mask_img.affine.copy(),
        Field.VOXEL_SIZES: mask_img.header.get_zooms(),
        Field.DIMENSIONS: mask_img.shape,
        Field.VOXEL_ORDER: ''.join(aff2axcodes(mask_img.affine))
    }

    # Use generator to save the streamlines on-the-fly
    nib.streamlines.save(tractogram, args.output_file, header=header)
Exemple #4
0
def test_closest_peak_tracker():
    """This tests that the Closest Peak Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.5, .5, 0.]])
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [2, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.]), np.array([2., 4., 0.])]

    mask = (simple_image > 0).astype(float)
    tc = BinaryTissueClassifier(mask)

    dg = ClosestPeakDirectionGetter.from_pmf(pmf, 90, sphere,
                                             pmf_threshold=0.1)
    streamlines = Streamlines(LocalTracking(dg, tc, seeds, np.eye(4), 1.))

    expected = [np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.],
                          [4., 1., 0.]]),
                np.array([[2., 0., 0.],
                          [2., 1., 0.],
                          [2., 2., 0.],
                          [2., 3., 0.],
                          [2., 4., 0.]])]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    if not allclose(streamlines[0], expected[0]):
        raise AssertionError()
    if not allclose(streamlines[1], expected[1]):
        raise AssertionError()
def test_binary_tissue_classifier():
    """This tests that the binary tissue classifier returns expected
     tissue types.
    """

    mask = np.random.random((4, 4, 4))
    mask[mask < 0.4] = 0.0

    btc_boolean = BinaryTissueClassifier(mask > 0)
    btc_float64 = BinaryTissueClassifier(mask)

    # test voxel center
    for ind in ndindex(mask.shape):
        pts = np.array(ind, dtype='float64')
        state_boolean = btc_boolean.check_point(pts)
        state_float64 = btc_float64.check_point(pts)
        if mask[ind] > 0:
            npt.assert_equal(state_boolean, TissueTypes.TRACKPOINT)
            npt.assert_equal(state_float64, TissueTypes.TRACKPOINT)
        else:
            npt.assert_equal(state_boolean, TissueTypes.ENDPOINT)
            npt.assert_equal(state_float64, TissueTypes.ENDPOINT)

    # test random points in voxel
    for ind in ndindex(mask.shape):
        for _ in range(50):
            pts = np.array(ind, dtype='float64') + np.random.random(3) - 0.5
            state_boolean = btc_boolean.check_point(pts)
            state_float64 = btc_float64.check_point(pts)
            if mask[ind] > 0:
                npt.assert_equal(state_boolean, TissueTypes.TRACKPOINT)
                npt.assert_equal(state_float64, TissueTypes.TRACKPOINT)
            else:
                npt.assert_equal(state_boolean, TissueTypes.ENDPOINT)
                npt.assert_equal(state_float64, TissueTypes.ENDPOINT)

    # test outside points
    outside_pts = [[100, 100, 100], [0, -1, 1], [0, 10, 2],
                   [0, 0.5, -0.51], [0, -0.51, 0.1]]
    for pts in outside_pts:
        pts = np.array(pts, dtype='float64')
        state_boolean = btc_boolean.check_point(pts)
        state_float64 = btc_float64.check_point(pts)
        npt.assert_equal(state_boolean, TissueTypes.OUTSIDEIMAGE)
        npt.assert_equal(state_float64, TissueTypes.OUTSIDEIMAGE)
Exemple #6
0
def tracking_maxodf(dir_src, dir_out, verbose=False):

    wm_name = 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
    wm_mask, affine = load_nifti(pjoin(dir_src, wm_name), verbose)

    sh_name = 'sh_' + par_b_tag + '_' + par_dim_tag + '.nii.gz'
    sh, _ = load_nifti(pjoin(dir_src, sh_name), verbose)

    sphere = get_sphere('symmetric724') 

    classifier = ThresholdTissueClassifier(wm_mask.astype('f8'), .5)
    classifier = BinaryTissueClassifier(wm_mask)
    max_dg = DeterministicMaximumDirectionGetter.from_shcoeff(sh, max_angle=par_trk_max_angle, sphere=sphere)
    seeds = utils.seeds_from_mask(wm_mask, density=2, affine=affine)
    streamlines = LocalTracking(max_dg, classifier, seeds, affine, step_size=par_trk_step_size)
    streamlines = list(streamlines)

    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_trk_odf_tag + '.trk'
    save_trk(pjoin(dir_out, trk_name), streamlines, affine, wm_mask.shape)
Exemple #7
0
    def _core_run(self, stopping_path, use_binary_mask, stopping_thr,
                  seeding_path, seed_density, step_size, direction_getter,
                  out_tract, save_seeds):

        stop, affine = load_nifti(stopping_path)
        if use_binary_mask:
            classifier = BinaryTissueClassifier(stop > stopping_thr)
        else:
            classifier = ThresholdTissueClassifier(stop, stopping_thr)
        logging.info('classifier done')
        seed_mask, _ = load_nifti(seeding_path)
        seeds = \
            utils.seeds_from_mask(
                seed_mask,
                density=[seed_density, seed_density, seed_density],
                affine=affine)
        logging.info('seeds done')

        tracking_result = LocalTracking(direction_getter,
                                        classifier,
                                        seeds,
                                        affine,
                                        step_size=step_size,
                                        save_seeds=save_seeds)

        logging.info('LocalTracking initiated')

        if save_seeds:
            streamlines, seeds = zip(*tracking_result)
            tractogram = Tractogram(streamlines, affine_to_rasmm=np.eye(4))
            tractogram.data_per_streamline['seeds'] = seeds
        else:
            tractogram = Tractogram(tracking_result, affine_to_rasmm=np.eye(4))

        save(tractogram, out_tract)
        logging.info('Saved {0}'.format(out_tract))
Exemple #8
0
def test_bootstap_peak_tracker():
    """This tests that the Bootstrat Peak Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = get_sphere('repulsion100')

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    simple_image = np.array([
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [2, 3, 2, 2, 2, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
    ])
    simple_image = simple_image[..., None]

    bvecs = sphere.vertices
    bvals = np.ones(len(bvecs)) * 1000
    bvecs = np.insert(bvecs, 0, np.array([0, 0, 0]), axis=0)
    bvals = np.insert(bvals, 0, 0)
    gtab = gradient_table(bvals, bvecs)
    angles = [(90, 90), (90, 0)]
    fracs = [50, 50]
    mevals = np.array([[1.5, 0.4, 0.4], [1.5, 0.4, 0.4]]) * 1e-3
    mevecs = [
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
        np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
    ]
    voxel1 = single_tensor(gtab, 1, mevals[0], mevecs[0], snr=None)
    voxel2 = single_tensor(gtab, 1, mevals[0], mevecs[1], snr=None)
    voxel3, _ = multi_tensor(gtab,
                             mevals,
                             fractions=fracs,
                             angles=angles,
                             snr=None)
    data = np.tile(voxel3, [5, 6, 1, 1])
    data[simple_image == 1] = voxel1
    data[simple_image == 2] = voxel2

    response = (np.array(mevals[1]), 1)
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=6)

    seeds = [np.array([0., 1., 0.]), np.array([2., 4., 0.])]

    tc = BinaryTissueClassifier((simple_image > 0).astype(float))
    sphere = HemiSphere.from_sphere(get_sphere('symmetric724'))
    boot_dg = BootDirectionGetter.from_data(data, csd_model, 60, sphere=sphere)

    streamlines_generator = LocalTracking(boot_dg, tc, seeds, np.eye(4), 1.)
    streamlines = Streamlines(streamlines_generator)
    expected = [
        np.array([[0., 1., 0.], [1., 1., 0.], [2., 1., 0.], [3., 1., 0.],
                  [4., 1., 0.]]),
        np.array([
            [2., 4., 0.],
            [2., 3., 0.],
            [2., 2., 0.],
            [2., 1., 0.],
            [2., 0., 0.],
        ])
    ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y, atol=0.5)

    if not allclose(streamlines[0], expected[0]):
        raise AssertionError()
    if not allclose(streamlines[1], expected[1]):
        raise AssertionError()
Exemple #9
0
def test_particle_filtering_tractography():
    """This tests that the ParticleFilteringTracking produces
    more streamlines connecting the gray matter than LocalTracking.
    """
    sphere = get_sphere('repulsion100')
    step_size = 0.2

    # Simple tissue masks
    simple_wm = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0],
                          [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 0],
                          [0, 0, 0, 0, 0, 0]])
    simple_wm = np.dstack([
        np.zeros(simple_wm.shape), simple_wm, simple_wm, simple_wm,
        np.zeros(simple_wm.shape)
    ])
    simple_gm = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0],
                          [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0],
                          [0, 0, 0, 0, 0, 0]])
    simple_gm = np.dstack([
        np.zeros(simple_gm.shape), simple_gm, simple_gm, simple_gm,
        np.zeros(simple_gm.shape)
    ])
    simple_csf = np.ones(simple_wm.shape) - simple_wm - simple_gm
    tc = ActTissueClassifier.from_pve(simple_wm, simple_gm, simple_csf)
    seeds = seeds_from_mask(simple_wm, density=2)

    # Random pmf in every voxel
    shape_img = list(simple_wm.shape)
    shape_img.extend([sphere.vertices.shape[0]])
    np.random.seed(0)  # Random number generator initialization
    pmf = np.random.random(shape_img)

    # Test that PFT recover equal or more streamlines than localTracking
    dg = ProbabilisticDirectionGetter.from_pmf(pmf, 60, sphere)
    local_streamlines_generator = LocalTracking(dg,
                                                tc,
                                                seeds,
                                                np.eye(4),
                                                step_size,
                                                max_cross=1,
                                                return_all=False)
    local_streamlines = Streamlines(local_streamlines_generator)

    pft_streamlines_generator = ParticleFilteringTracking(
        dg,
        tc,
        seeds,
        np.eye(4),
        step_size,
        max_cross=1,
        return_all=False,
        pft_back_tracking_dist=1,
        pft_front_tracking_dist=0.5)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    npt.assert_(np.array([len(pft_streamlines) > 0]))
    npt.assert_(np.array([len(pft_streamlines) >= len(local_streamlines)]))

    # Test that all points are equally spaced
    for l in [1, 2, 5, 10, 100]:
        pft_streamlines = ParticleFilteringTracking(dg,
                                                    tc,
                                                    seeds,
                                                    np.eye(4),
                                                    step_size,
                                                    max_cross=1,
                                                    return_all=True,
                                                    maxlen=l)
        for s in pft_streamlines:
            for i in range(len(s) - 1):
                npt.assert_almost_equal(np.linalg.norm(s[i] - s[i + 1]),
                                        step_size)
    # Test that all points are within the image volume
    seeds = seeds_from_mask(np.ones(simple_wm.shape), density=1)
    pft_streamlines_generator = ParticleFilteringTracking(dg,
                                                          tc,
                                                          seeds,
                                                          np.eye(4),
                                                          step_size,
                                                          max_cross=1,
                                                          return_all=True)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    for s in pft_streamlines:
        npt.assert_(np.all((s + 0.5).astype(int) >= 0))
        npt.assert_(np.all((s + 0.5).astype(int) < simple_wm.shape))

    # Test that the number of streamline return with return_all=True equal the
    # number of seeds places
    npt.assert_(np.array([len(pft_streamlines) == len(seeds)]))

    # Test non WM seed position
    seeds = [[0, 5, 4], [0, 0, 1], [50, 50, 50]]
    pft_streamlines_generator = ParticleFilteringTracking(dg,
                                                          tc,
                                                          seeds,
                                                          np.eye(4),
                                                          step_size,
                                                          max_cross=1,
                                                          return_all=True)
    pft_streamlines = Streamlines(pft_streamlines_generator)

    npt.assert_equal(len(pft_streamlines[0]), 3)  # INVALIDPOINT
    npt.assert_equal(len(pft_streamlines[1]), 3)  # ENDPOINT
    npt.assert_equal(len(pft_streamlines[2]), 1)  # OUTSIDEIMAGE

    # Test with wrong tissueclassifier type
    tc_bin = BinaryTissueClassifier(simple_wm)
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(dg, tc_bin, seeds,
                                                      np.eye(4), step_size))
    # Test with invalid back/front tracking distances
    npt.assert_raises(
        ValueError,
        lambda: ParticleFilteringTracking(dg,
                                          tc,
                                          seeds,
                                          np.eye(4),
                                          step_size,
                                          pft_back_tracking_dist=0,
                                          pft_front_tracking_dist=0))
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(
            dg, tc, seeds, np.eye(4), step_size, pft_back_tracking_dist=-1))
    npt.assert_raises(
        ValueError,
        lambda: ParticleFilteringTracking(dg,
                                          tc,
                                          seeds,
                                          np.eye(4),
                                          step_size,
                                          pft_back_tracking_dist=0,
                                          pft_front_tracking_dist=-2))

    # Test with invalid affine shape
    npt.assert_raises(
        ValueError,
        lambda: ParticleFilteringTracking(dg, tc, seeds, np.eye(3), step_size))

    # Test with invalid maxlen
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(
            dg, tc, seeds, np.eye(4), step_size, maxlen=0))
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(
            dg, tc, seeds, np.eye(4), step_size, maxlen=-1))

    # Test with invalid particle count
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(
            dg, tc, seeds, np.eye(4), step_size, particle_count=0))
    npt.assert_raises(
        ValueError, lambda: ParticleFilteringTracking(
            dg, tc, seeds, np.eye(4), step_size, particle_count=-1))

    # Test reproducibility
    tracking_1 = Streamlines(
        ParticleFilteringTracking(dg,
                                  tc,
                                  seeds,
                                  np.eye(4),
                                  step_size,
                                  random_seed=0)).data
    tracking_2 = Streamlines(
        ParticleFilteringTracking(dg,
                                  tc,
                                  seeds,
                                  np.eye(4),
                                  step_size,
                                  random_seed=0)).data
    npt.assert_equal(tracking_1, tracking_2)
Exemple #10
0
                if seeds[i][j]<0.:
                    seeds[i][j]=-seeds[i][j]
    et3 = time.time() - st3
    print 'seeding transformation finished, the total seeds are {}, running time is {}'.format(seeds.shape[0], et3)

    print 'generating streamlines begins'
    st4 = time.time()
    fod_coeff = csd_peaks.shm_coeff
    prob_dg = ProbabilisticDirectionGetter.from_shcoeff(fod_coeff, max_angle=70.,relative_peak_threshold=0.1,
                                                        sphere=default_sphere)

    del data, img, labels, labels_img, csd_peaks, csd_model
    gc.collect()
    print 'data, img, labels, labels_img, csd_peaks, csd_model delete to save memory'

    classifier = BinaryTissueClassifier(mask)
    streamline_generator = LocalTracking(prob_dg, classifier, seeds, affine, step_size=.5)
    affine = streamline_generator.affine

    streamlines = Streamlines(streamline_generator)
    et4 = time.time() - st4
#lengths = [length(sl).astype(np.int) for sl in streamlines]
#print 'generating streamlines finished, the length is {}~{}, running time is {}'.format(np.min(lengths), np.max(lengths), et4)

    del bm, mask, fod_coeff, prob_dg, classifier #, lengths
    gc.collect()
    print 'bm, mask, fod_coeff, prob_dg, classifier, lengths delete to save memory'

    #Cut streamlines
    #streamlines = [sl for sl in streamlines if length(sl).astype(np.int)>3]
    #print 'cutting short streamlines finished'
def execution(self, context):

    sh_coeff_vol = aims.read(self.sh_coefficients.fullPath())
    header = sh_coeff_vol.header()

    #transformation from Aims LPI mm space to RAS mm (reference space)

    aims_mm_to_ras_mm = np.array(header['transformations'][0]).reshape((4, 4))
    voxel_size = np.array(header['voxel_size'])
    if len(voxel_size) == 4:
        voxel_size = voxel_size[:-1]
    scaling = np.concatenate((voxel_size, np.ones(1)))
    #context.write(voxel_size.shape)
    scaling_mat = np.diag(scaling)
    #context.write(scaling_mat.shape, aims_mm_to_ras_mm.shape )
    aims_voxel_to_ras_mm = np.dot(aims_mm_to_ras_mm, scaling_mat)

    affine_tracking = np.eye(4)

    sh = np.array(sh_coeff_vol, copy=True)
    sh = sh.astype(np.float64)
    vol_shape = sh.shape[:-1]
    if self.sphere is not None:
        sphere = read_sphere(self.sphere.fullPath())
    else:
        context.write(
            'No Projection Sphere provided. Default dipy sphere symmetric 362 is used'
        )
        sphere = get_sphere()

    dg = DirectionGetter[self.type].from_shcoeff(
        sh,
        self.max_angle,
        sphere,
        basis_type=None,
        relative_peak_threshold=self.relative_peak_threshold,
        min_separation_angle=self.min_separation_angle)

    #Handling seeds in both deterministic and probabilistic framework
    s = np.loadtxt(self.seeds.fullPath())
    s = s.astype(np.float32)
    i = np.arange(self.nb_samples)
    if self.nb_samples <= 1:
        seeds = s
    else:
        seeds = np.zeros((self.nb_samples, ) + s.shape)
        seeds[i] = s
        seeds = seeds.reshape((-1, 3))
    #put seeds in voxel space
    context.write(seeds[0])
    seeds = nib.affines.apply_affine(np.linalg.inv(scaling_mat), seeds)
    #building classifier
    context.write(seeds[0])

    if self.constraint == 'Binary':
        mask_vol = aims.read(self.mask.fullPath())
        mask = np.asarray(mask_vol)[..., 0]
        mask = mask.astype(bool)
        classifier = BinaryTissueClassifier(mask)
    elif self.constraint == 'Threshold':
        scal_vol = aims.read(self.scalar_volume.fullPath())
        scal = np.asarray(scal_vol)[..., 0]
        scal = scal.astype(np.float32)
        classifier = ThresholdTissueClassifier(scal, self.threshold)
    else:
        csf_vol = aims.read(self.csf_pve.fullPath())
        grey_vol = aims.read(self.gm_pve.fullPath())
        white_vol = aims.read(self.wm_pve.fullPath())

        csf = np.array(csf_vol)
        csf = csf[..., 0]
        gm = np.array(grey_vol)
        gm = gm[..., 0]
        wm = np.array(white_vol)
        wm = wm[..., 0]

        #rethreshold volumes due to interpolation (eg values >1)
        total = (csf + gm + wm).copy()
        csf[total <= 0] = 0
        gm[total <= 0] = 0
        wm[total <= 0] = 0
        csf[total != 0] = (csf[total != 0]) / (total[total != 0])
        wm[total != 0] = (wm[total != 0]) / (total[total != 0])
        gm[total != 0] = gm[total != 0] / (total[total != 0])
        if self.constraint == 'ACT':
            classifier = ActTissueClassifier.from_pve(wm_map=wm,
                                                      gm_map=gm,
                                                      csf_map=csf)
        elif self.constraint == 'CMC':
            classifier = CmcTissueClassifier.from_pve(wm_map=wm,
                                                      gm_map=gm,
                                                      csf_map=csf)

    #Tracking is made in the Aims LPO space (solve shear verification problem, does not work for anisotropic voxels)
    streamlines_generator = LocalTracking(dg,
                                          classifier,
                                          seeds,
                                          affine_tracking,
                                          step_size=self.step_size,
                                          max_cross=self.crossing_max,
                                          maxlen=self.nb_iter_max,
                                          fixedstep=np.float32(
                                              self.fixed_step),
                                          return_all=self.return_all)
    #Store Fibers directly in  LPI orientation with appropriate transformation
    save_trk(self.streamlines.fullPath(),
             streamlines_generator,
             affine=aims_voxel_to_ras_mm,
             vox_size=voxel_size,
             shape=vol_shape)

    transformManager = getTransformationManager()
    transformManager.copyReferential(self.sh_coefficients, self.streamlines)
Exemple #12
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    if args.isVerbose:
        logging.basicConfig(level=logging.DEBUG)

    assert_inputs_exist(parser, [args.sh_file, args.seed_file, args.mask_file])
    assert_outputs_exist(parser, args, [args.output_file])

    if not nib.streamlines.is_supported(args.output_file):
        parser.error('Invalid output streamline file format (must be trk or ' +
                     'tck): {0}'.format(args.output_file))

    if not args.min_length > 0:
        parser.error('minL must be > 0, {}mm was provided.'.format(
            args.min_length))
    if args.max_length < args.min_length:
        parser.error(
            'maxL must be > than minL, (minL={}mm, maxL={}mm).'.format(
                args.min_length, args.max_length))

    if args.compress:
        if args.compress < 0.001 or args.compress > 1:
            logging.warning(
                'You are using an error rate of {}.\nWe recommend setting it '
                'between 0.001 and 1.\n0.001 will do almost nothing to the '
                'tracts while 1 will higly compress/linearize the tracts'.
                format(args.compress))

    if args.npv and args.npv <= 0:
        parser.error('Number of seeds per voxel must be > 0.')

    if args.nt and args.nt <= 0:
        parser.error('Total number of seeds must be > 0.')

    mask_img = nib.load(args.mask_file)
    mask_data = mask_img.get_data()

    # Make sure the mask is isotropic. Else, the strategy used
    # when providing information to dipy (i.e. working as if in voxel space)
    # will not yield correct results.
    fodf_sh_img = nib.load(args.sh_file)
    if not np.allclose(np.mean(fodf_sh_img.header.get_zooms()[:3]),
                       fodf_sh_img.header.get_zooms()[0],
                       atol=1.e-3):
        parser.error(
            'SH file is not isotropic. Tracking cannot be ran robustly.')

    if args.npv:
        nb_seeds = args.npv
        seed_per_vox = True
    elif args.nt:
        nb_seeds = args.nt
        seed_per_vox = False
    else:
        nb_seeds = 1
        seed_per_vox = True

    voxel_size = fodf_sh_img.header.get_zooms()[0]
    vox_step_size = args.step_size / voxel_size
    seed_img = nib.load(args.seed_file)
    seeds = track_utils.random_seeds_from_mask(
        seed_img.get_data(),
        seeds_count=nb_seeds,
        seed_count_per_voxel=seed_per_vox,
        random_seed=args.seed)

    # Tracking is performed in voxel space
    max_steps = int(args.max_length / args.step_size) + 1
    streamlines = LocalTracking(_get_direction_getter(args, mask_data),
                                BinaryTissueClassifier(mask_data),
                                seeds,
                                np.eye(4),
                                step_size=vox_step_size,
                                max_cross=1,
                                maxlen=max_steps,
                                fixedstep=True,
                                return_all=True,
                                random_seed=args.seed)

    scaled_min_length = args.min_length / voxel_size
    scaled_max_length = args.max_length / voxel_size

    filtered_streamlines = (
        s for s in streamlines
        if scaled_min_length <= length(s) <= scaled_max_length)
    if args.compress:
        filtered_streamlines = (compress_streamlines(s, args.compress)
                                for s in filtered_streamlines)

    tractogram = LazyTractogram(lambda: filtered_streamlines,
                                affine_to_rasmm=seed_img.affine)

    filetype = nib.streamlines.detect_format(args.output_file)
    header = create_header_from_anat(seed_img, base_filetype=filetype)

    # Use generator to save the streamlines on-the-fly
    nib.streamlines.save(tractogram, args.output_file, header=header)
Exemple #13
0
    csd_peaks = peaks_from_model(csd_model,
                                 data,
                                 sphere=peaks.default_sphere,
                                 relative_peak_threshold=0.5,
                                 min_separation_angle=60,
                                 mask=mask,
                                 return_odf=True,
                                 return_sh=False,
                                 parallel=True,
                                 nbr_processes=multiprocessing.cpu_count())

    duration2 = time() - t2
    print(runno + ' CSD duration %.3f' % (duration2, ))
    #mask and classifier
    seeds = utils.seeds_from_mask(mask, density=1, affine=np.eye(4))
    classifier = BinaryTissueClassifier(bm)
    #local tracking
    streamlines_generator = LocalTracking(csd_peaks,
                                          classifier,
                                          seeds,
                                          affine=np.eye(4),
                                          step_size=.5)
    # save a smaller part by only keeping one in 10 streamlines
    t3 = time()
    sg_small = lambda: (s for i, s in enumerate(streamlines_generator)
                        if i % 10 == 0)
    save_trk_heavy_duty(outpath + runno + "_bmCSD_detr_small60odf.trk",
                        streamlines=sg_small,
                        affine=affine,
                        shape=mask.shape,
                        vox_size=vox_size)
csamodel = shm.CsaOdfModel(gtab, 6)
csapeaks = peaks.peaks_from_model(model=csamodel,
                                  data=data,
                                  sphere=peaks.default_sphere,
                                  relative_peak_threshold=.8,
                                  min_separation_angle=45,
                                  mask=white_matter)
"""
Now we can use EuDX to track all of the white matter. To keep things reasonably
fast we use ``density=1`` which will result in 1 seeds per voxel. The tissue
classifier, determining when the tracking stops, is set to stop when the
tracking exit the white matter.
"""

seeds = utils.seeds_from_mask(white_matter, density=1)
tissue_classifier = BinaryTissueClassifier(white_matter)
affine = np.eye(4)

streamline_generator = LocalTracking(csapeaks,
                                     tissue_classifier,
                                     seeds,
                                     affine=affine,
                                     step_size=0.5)
streamlines = Streamlines(streamline_generator)
"""
The first of the tracking utilities we'll cover here is ``target``. This
function takes a set of streamlines and a region of interest (ROI) and returns
only those streamlines that pass though the ROI. The ROI should be an array
such that the voxels that belong to the ROI are ``True`` and all other voxels
are ``False`` (this type of binary array is sometimes called a mask). This
function can also exclude all the streamlines that pass though an ROI by
Exemple #15
0
def prep_tissues(B0_mask,
                 gm_in_dwi,
                 vent_csf_in_dwi,
                 wm_in_dwi,
                 tiss_class,
                 cmc_step_size=0.2):
    '''
    Estimate a tissue classifier for tractography.

    Parameters
    ----------
    B0_mask : str
        File path to B0 brain mask.
    gm_in_dwi : str
        File path to grey-matter tissue segmentation Nifti1Image.
    vent_csf_in_dwi : str
        File path to ventricular CSF tissue segmentation Nifti1Image.
    wm_in_dwi : str
        File path to white-matter tissue segmentation Nifti1Image.
    tiss_class : str
        Tissue classification method.
    cmc_step_size : float
        Step size from CMC tissue classification method.

    Returns
    -------
    tiss_classifier : obj
        Tissue classifier object.
    '''

    try:
        import cPickle as pickle
    except ImportError:
        import _pickle as pickle
    from dipy.tracking.local import ActTissueClassifier, CmcTissueClassifier, BinaryTissueClassifier
    # Loads mask and ensures it's a true binary mask
    mask_img = nib.load(B0_mask)
    # Load tissue maps and prepare tissue classifier
    gm_mask = nib.load(gm_in_dwi)
    gm_mask_data = gm_mask.get_fdata()
    wm_mask = nib.load(wm_in_dwi)
    wm_mask_data = wm_mask.get_fdata()
    if tiss_class == 'act':
        vent_csf_in_dwi = nib.load(vent_csf_in_dwi)
        vent_csf_in_dwi_data = vent_csf_in_dwi.get_fdata()
        background = np.ones(mask_img.shape)
        background[(gm_mask_data + wm_mask_data +
                    vent_csf_in_dwi_data) > 0] = 0
        include_map = gm_mask_data
        include_map[background > 0] = 1
        exclude_map = vent_csf_in_dwi_data
        tiss_classifier = ActTissueClassifier(include_map, exclude_map)
    elif tiss_class == 'bin':
        wm_in_dwi_data = nib.load(wm_in_dwi).get_fdata().astype('bool')
        tiss_classifier = BinaryTissueClassifier(wm_in_dwi_data)
    elif tiss_class == 'cmc':
        vent_csf_in_dwi = nib.load(vent_csf_in_dwi)
        vent_csf_in_dwi_data = vent_csf_in_dwi.get_fdata()
        voxel_size = np.average(wm_mask.get_header()['pixdim'][1:4])
        tiss_classifier = CmcTissueClassifier.from_pve(
            wm_mask_data,
            gm_mask_data,
            vent_csf_in_dwi_data,
            step_size=cmc_step_size,
            average_voxel_size=voxel_size)
    else:
        B0_mask_data = nib.load(B0_mask).get_fdata().astype('bool')
        tiss_classifier = BinaryTissueClassifier(B0_mask_data)

    return tiss_classifier
Exemple #16
0
def test_affine_transformations():
    """This tests that the input affine is properly handled by
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([
        [0, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 3, 2, 2, 2, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0],
    ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.]), np.array([2., 4., 0.])]

    expected = [
        np.array([[1., 1., 0.], [2., 1., 0.], [3., 1., 0.]]),
        np.array([[2., 1., 0.], [2., 2., 0.], [2., 3., 0.], [2., 4., 0.]])
    ]

    mask = (simple_image > 0).astype(float)
    tc = BinaryTissueClassifier(mask)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf,
                                                      60,
                                                      sphere,
                                                      pmf_threshold=0.1)

    # TST- bad affine wrong shape
    bad_affine = np.eye(3)
    npt.assert_raises(ValueError, LocalTracking, dg, tc, seeds, bad_affine, 1.)

    # TST - bad affine with shearing
    bad_affine = np.eye(4)
    bad_affine[0, 1] = 1.
    npt.assert_raises(ValueError, LocalTracking, dg, tc, seeds, bad_affine, 1.)

    # TST - identity
    a0 = np.eye(4)
    # TST - affines with positive/negative offsets
    a1 = np.eye(4)
    a1[:3, 3] = [1, 2, 3]
    a2 = np.eye(4)
    a2[:3, 3] = [-2, 0, -1]
    # TST - affine with scaling
    a3 = np.eye(4)
    a3[0, 0] = a3[1, 1] = a3[2, 2] = 8
    # TST - affine with axes inverting (negative value)
    a4 = np.eye(4)
    a4[1, 1] = a4[2, 2] = -1
    # TST - combined affines
    a5 = a1 + a2 + a3
    a5[3, 3] = 1
    # TST - in vivo affine example
    # Sometimes data have affines with tiny shear components.
    # For example, the small_101D data-set has some of that:
    fdata, _, _ = get_fnames('small_101D')
    a6 = nib.load(fdata).affine

    for affine in [a0, a1, a2, a3, a4, a5, a6]:
        lin = affine[:3, :3]
        offset = affine[:3, 3]
        seeds_trans = [np.dot(lin, s) + offset for s in seeds]

        # We compute the voxel size to adjust the step size to one voxel
        voxel_size = np.mean(np.sqrt(np.dot(lin, lin).diagonal()))

        streamlines = LocalTracking(direction_getter=dg,
                                    tissue_classifier=tc,
                                    seeds=seeds_trans,
                                    affine=affine,
                                    step_size=voxel_size,
                                    return_all=True)

        # We apply the inverse affine transformation to the generated
        # streamlines. It should be equals to the expected streamlines
        # (generated with the identity affine matrix).
        affine_inv = np.linalg.inv(affine)
        lin = affine_inv[:3, :3]
        offset = affine_inv[:3, 3]
        streamlines_inv = []
        for line in streamlines:
            streamlines_inv.append([np.dot(pts, lin) + offset for pts in line])

        npt.assert_equal(len(streamlines_inv[0]), len(expected[0]))
        npt.assert_(np.allclose(streamlines_inv[0], expected[0], atol=0.3))
        npt.assert_equal(len(streamlines_inv[1]), len(expected[1]))
        npt.assert_(np.allclose(streamlines_inv[1], expected[1], atol=0.3))
**Parameters**

- mask: numpy array [:, :, :]

**Stopping criterion**

- 'ENDPOINT': mask = 0
- 'OUTSIDEIMAGE': tracking point outside of mask
- 'TRACKPOINT': no direction is available
- 'INVALIDPOINT': N/A
"""

from dipy.tracking.local import BinaryTissueClassifier

binary_classifier = BinaryTissueClassifier(white_matter == 1)

fig = plt.figure()
plt.xticks([])
plt.yticks([])
fig.tight_layout()
plt.imshow(white_matter[:, :, data.shape[2] // 2].T,
           cmap='gray',
           origin='lower',
           interpolation='nearest')
fig.savefig('white_matter_mask.png')
"""
.. figure:: white_matter_mask.png
 :align: center

 **White matter binary mask.**
        nbr_processes=4)

    duration2 = time() - t2
    print(duration2)\
    #wenlin make this change-adress name to each animal

    #    print('CSA duration %.3f' % (duration2,))
    print(runno + ' CSA duration %.3f' % (duration2, ))

    t3 = time()

    # from dipy.tracking.local import ThresholdTissueClassifier
    from dipy.tracking.local import BinaryTissueClassifier  # Wenlin Make this change

    # classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)
    classifier = BinaryTissueClassifier(bm)  # Wenlin Make this change

    from dipy.tracking import utils

    # generates about 2 seeds per voxel
    # seeds = utils.random_seeds_from_mask(fa > .2, seeds_count=2,
    #                                      affine=np.eye(4))

    # generates about 2 million streamlines
    #seeds = utils.seeds_from_mask(fa > .2, density=1,
    #                              affine=np.eye(4))

    seeds = utils.seeds_from_mask(mask, density=1,
                                  affine=np.eye(4))  # Wenlin make this change

    streamlines_generator = LocalTracking(csa_peaks,