Exemple #1
0
def a5():
    directories.A5()
    # check tensorflow's GPU support
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    print("Num GPUs Available",
          len(tf.config.experimental.list_physical_devices('GPU')))
    tf.config.experimental.set_memory_growth(physical_devices[0], True)

    features = 784
    classes = 10
    fltr = [3, 5]
    h1 = [128, 384, 749]

    # φόρτωση mnist από το keras
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    # κάνουμε το mnist reshape
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
    x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    # ορισμός των labels
    y_train = to_categorical(y_train, classes)
    y_test = to_categorical(y_test, classes)

    for fl in fltr:
        for nodes in h1:
            print(
                f'Μοντέλο CNN με ένα επίπεδο 32 φίλτρων {fl}x{fl}, 2x2 MaxPooling και MLP {nodes}:10'
            )
            # model
            model = Sequential()
            # first layer: Convolution 2D, 32 filters of size 5x5
            model.add(
                Conv2D(32, (fl, fl),
                       input_shape=(28, 28, 1),
                       activation='relu',
                       kernel_initializer='he_uniform'))
            # second layer: MaxPooling 2D, returns max value of image portion (2x2)
            model.add(MaxPooling2D(pool_size=(2, 2)))
            # third layer: Flatten results of previous layers to feed into the MLP
            model.add(Flatten())
            # fourth and output layer: our standard MLP
            model.add(
                Dense(nodes,
                      kernel_initializer='he_uniform',
                      activation='relu'))
            model.add(
                Dense(10,
                      kernel_initializer='he_uniform',
                      activation='softmax'))
            # compile the model
            model.compile(loss='categorical_crossentropy',
                          optimizer='adam',
                          metrics=['accuracy'])

            fname = './logs/A5/32({},{})_0.2_{}-10.txt'.format(fl, fl, nodes)
            directories.filecheck(fname)
            acc = []
            vloss = []
            tloss = []
            acc_sum = 0
            loss_sum = 0
            f = open(fname, 'w')
            sys.stdout = f

            fold = 1
            kfold = KFold(5, shuffle=True, random_state=1)
            for train, test in kfold.split(x_train):
                xi_train, xi_test = x_train[train], x_train[test]
                yi_train, yi_test = y_train[train], y_train[test]
                print(f' fold # {fold}, TRAIN: {train}, TEST: {test}')
                history = model.fit(xi_train,
                                    yi_train,
                                    epochs=10,
                                    batch_size=200,
                                    verbose=1,
                                    validation_data=(xi_test, yi_test))

                acc.append(history.history['val_accuracy'])
                vloss.append(history.history['val_loss'])
                tloss.append(history.history['loss'])

                # Test the model after training
                test_results = model.evaluate(x_test, y_test, verbose=1)
                print(
                    f'Αποτελέσματα στο fold # {fold} - Loss: {test_results[0]} - Accuracy: {test_results[1]}'
                )
                fold = fold + 1

                # save 5-fold cv results
                loss_sum += test_results[0]
                acc_sum += test_results[1]

            # plots
            # accuracy
            plot_acc = plt.figure(1)
            title1 = 'Validation Accuracy, CNN 32({},{}), max pooling, {}-10'.format(
                fl, fl, nodes)
            plt.title(title1, loc='center', pad=None)
            plt.plot(np.mean(acc, axis=0))
            plt.ylabel('acc')
            plt.xlabel('epoch')

            # loss
            plot_loss = plt.figure(2)
            title2 = 'Loss, CNN 32({},{}), max pooling, {}-10'.format(
                fl, fl, nodes)
            plt.title(title2, loc='center', pad=None)
            plt.plot(np.mean(vloss, axis=0))
            # train loss
            plt.plot(np.mean(tloss, axis=0))
            plt.ylabel('loss')
            plt.xlabel('epoch')
            plt.legend(['validation', 'train'], loc='upper left')

            directories.filecheck('./plots/A5/{}.png'.format(title1))
            directories.filecheck('./plots/A5/{}.png'.format(title2))
            plot_acc.savefig('./plots/A5/{}.png'.format(title1), format='png')
            plot_loss.savefig('./plots/A5/{}.png'.format(title2), format='png')

            print(
                f'Συνολικά αποτελέσματα- Loss {loss_sum/ 5} - Accuracy {acc_sum / 5}'
            )
            # επιστροφή stdout στην κονσόλα
            f.close()
            sys.stdout = sys.__stdout__
            # απελευθερωση μνημης
            print(f'Clearing session....')
            tf.keras.backend.clear_session()
            plt.close(1)
            plt.close(2)
            acc.clear()
            vloss.clear()
            tloss.clear()
Exemple #2
0
x_train = x_train.reshape(x_train.shape[0], 784)
x_test = x_test.reshape(x_test.shape[0], 784)
# x_train,test are now matrices of matrices

# MinMax scaling
scaler = preprocessing.MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
# ορισμός των labels
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

user_in = input('Run B4-A? y/n ')
if user_in == 'y':
    fname = 'logs/B4/evaluation for best mlp.txt'
    directories.filecheck(fname)
    f = open(fname, 'w')
    sys.stdout = f
    butler.evaluate_best_mlp(num_indiv, crossrate, mutrate, x_test, y_test)
    # επιστροφή stdout στην κονσόλα
    f.close()
    sys.stdout = sys.__stdout__

user_in = input('Run B4-B? y/n ')
if user_in == 'y':
    x_train_selected, x_test_selected = butler.get_selected(
        x_train, x_test, num_indiv, crossrate, mutrate)
    # model
    # Δημιουργία μοντέλου με χρήση του keras API
    model = Sequential()
    # Πρώτο κρυφό επίπεδο
Exemple #3
0
def extra_layer(ep):
    # αρχικοποίηση directories αποθήκευσης
    directories.extra_layer()

    # GPU support
    physical_devices = tensorflow.config.experimental.list_physical_devices(
        'GPU')
    print("CUDA - Αριθμός διαθέσιμων GPUs:",
          len(tensorflow.config.experimental.list_physical_devices('GPU')))
    tensorflow.config.experimental.set_memory_growth(physical_devices[0], True)

    # αρχικοποίηση μεταβλητών
    features = 784
    classes = 10
    h1 = 794
    h2 = [10, 50, 150, 250]

    # φόρτωση mnist από το keras
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    # κάνουμε το mnist reshape
    x_train = x_train.reshape(x_train.shape[0], features)
    x_test = x_test.reshape(x_test.shape[0], features)

    # MinMax scaling
    scaler = preprocessing.MinMaxScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.fit_transform(x_test)

    # ορισμός των labels
    y_train = to_categorical(y_train, classes)
    y_test = to_categorical(y_test, classes)

    # ορισμός input shape για το μοντέλο MLP βάσει των χαρακτηριστικών
    input_shape = (features, )

    # Έλεγχος για όλα τα H2
    for h_2 in h2:
        loss_sum = 0
        acc_sum = 0
        f_ce = "./logs/A2/Extra_Layer/results_CE_%s-%s.txt" % (h1, h_2)
        f_mse = "./logs/A2/Extra_Layer/results_MSE_%s-%s.txt" % (h1, h_2)
        directories.filecheck(f_ce)
        directories.filecheck(f_mse)

        # Δημιουργία μοντέλων με χρήση του keras API
        model_ce = Sequential()
        model_mse = Sequential()
        # πρώτο κρυφό επίπεδο
        model_ce.add(Dense(h1, input_shape=input_shape, activation='relu'))
        model_ce.add(Dense(h_2, activation='relu'))
        # δεύτερο κρυφό επίπεδο
        model_mse.add(Dense(h1, input_shape=input_shape, activation='relu'))
        model_mse.add(Dense(h_2, activation='relu'))
        # επίπεδο εξόδου
        model_ce.add(Dense(classes, activation='softmax'))
        model_mse.add(Dense(classes, activation='softmax'))

        # compile
        # crossentropy
        model_ce.compile(loss='categorical_crossentropy',
                         optimizer='SGD',
                         metrics=['accuracy'])
        # mse
        model_mse.compile(loss='mean_squared_error',
                          optimizer='SGD',
                          metrics=['accuracy'])

        # αρχείο εξόδου
        f = open(f_ce, 'w')
        print(
            'Μοντέλο Cross Entropy Loss για {} κόμβους στο πρώτο κρυφό επίπεδο και {} στο δεύτερο'
            .format(h1, h_2))
        sys.stdout = f
        ################################################################################################################
        ###################################### CROSS ENTROPY 5-FOLD CV #################################################
        fold = 1
        kfold = KFold(5, shuffle=True, random_state=1)
        aval = []
        lval = []
        ltrain = []
        for train, test in kfold.split(x_train):
            # διαχωρισμός train-test indexes
            xi_train, xi_test = x_train[train], x_train[test]
            yi_train, yi_test = y_train[train], y_train[test]
            print(f' fold # {fold}, TRAIN: {train}, TEST: {test}')

            # fit μοντέλου
            ce_history = model_ce.fit(xi_train,
                                      yi_train,
                                      epochs=ep,
                                      batch_size=200,
                                      verbose=1,
                                      validation_data=(xi_test, yi_test))

            # στατιστικά
            aval.append(ce_history.history['val_accuracy'])
            lval.append(ce_history.history['val_loss'])
            ltrain.append(ce_history.history['loss'])

            # μετρήσεις μοντέλου
            ce_results = model_ce.evaluate(x_test, y_test, verbose=1)
            print(
                f'Αποτελέσματα στο fold # {fold} - Loss: {ce_results[0]} - Accuracy: {ce_results[1]}'
            )

            fold = fold + 1
            # αποθήκευση για προβολή των αποτελεσμάτων 5-fold CV
            loss_sum += ce_results[0]
            acc_sum += ce_results[1]

        # plots
        # accuracy
        plot_acc = plt.figure(1)
        title1 = 'Validation Accuracy Crossentropy Model {}-{}-10'.format(
            h1, h_2)
        plt.title(title1, loc='center', pad=None)
        plt.plot(np.mean(aval, axis=0))
        plt.ylabel('acc')
        plt.xlabel('epoch')

        # loss
        plot_loss = plt.figure(2)
        title2 = 'Loss Crossentropy Model {}-{}-10'.format(h1, h_2)
        plt.title(title2, loc='center', pad=None)
        # validation loss
        plt.plot(np.mean(lval, axis=0))
        # train loss
        plt.plot(np.mean(ltrain, axis=0))
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['validation', 'train'], loc='upper left')

        # Save locally
        directories.filecheck('./plots/A2/Extra_Layer/{}.png'.format(title1))
        directories.filecheck('./plots/A2/Extra_Layer/{}.png'.format(title2))
        plot_loss.savefig("./plots/A2/Extra_Layer/{}.png".format(title2),
                          format='png')
        plot_acc.savefig("./plots/A2/Extra_Layer/{}.png".format(title1),
                         format='png')

        # εκτυπωση αποτελεσμάτων
        print(
            f'Συνολικά Αποτελέσματα (Cross Entropy Model)- Loss {loss_sum / 5} - Accuracy {acc_sum / 5}'
        )
        # επιστροφή stdout στην κονσόλα
        f.close()
        sys.stdout = sys.__stdout__
        # απελευθερωση μνημης
        print(f'Clearing session....')
        tensorflow.keras.backend.clear_session()
        plt.close(1)
        plt.close(2)

        # αρχικοποίηση καινούριων μεταβλητών
        loss_sum = 0
        acc_sum = 0
        fold = 1
        aval.clear()
        lval.clear()
        ltrain.clear()
        # νεο αρχείο εξόδου
        f = open(f_mse, 'w')
        print(
            'Μοντέλο Mean Squared Error Loss για {} κόμβους στο πρώτο κρυφό επίπεδο και {} στο δεύτερο'
            .format(h1, h_2))
        sys.stdout = f
        #######################################################################################################################
        #################################### MEAN SQUARED ERROR 5-FOLD CV #####################################################
        kfold = KFold(5, shuffle=True, random_state=1)
        for train, test in kfold.split(x_train):
            # διαχωρισμός train-test indexes
            xi_train, xi_test = x_train[train], x_train[test]
            yi_train, yi_test = y_train[train], y_train[test]
            print(f' fold # {fold}, TRAIN: {train}, TEST: {test}')

            # fit μοντέλου
            mse_history = model_mse.fit(xi_train,
                                        yi_train,
                                        epochs=ep,
                                        batch_size=200,
                                        verbose=1,
                                        validation_data=(xi_test, yi_test))

            # αποθήκευση validation metrics για τα plots
            aval.append(mse_history.history['val_accuracy'])
            lval.append(mse_history.history['val_loss'])
            ltrain.append(mse_history.history['loss'])

            # μετρήσεις μοντέλου
            mse_results = model_mse.evaluate(x_test, y_test, verbose=1)
            print(
                f'Αποτελέσματα στο fold # {fold} - Loss: {mse_results[0]} - Accuracy: {mse_results[1]}'
            )

            fold = fold + 1
            # αποθήκευση για προβολή των αποτελεσμάτων 5-fold CV
            loss_sum += mse_results[0]
            acc_sum += mse_results[1]
        # plots
        # accuracy
        plot_acc = plt.figure(1)
        title1 = 'Validation Accuracy MSE Model {}-{}-10'.format(h1, h_2)
        plt.title(title1, loc='center', pad=None)
        plt.plot(np.mean(aval, axis=0))
        plt.ylabel('acc')
        plt.xlabel('epoch')

        # loss
        plot_loss = plt.figure(2)
        title2 = 'Loss MSE Model {}-{}-10'.format(h1, h_2)
        plt.title(title2, loc='center', pad=None)
        # validation loss
        plt.plot(np.mean(lval, axis=0))
        # train loss
        plt.plot(np.mean(ltrain, axis=0))
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['validation', 'train'], loc='upper left')

        # Save locally
        directories.filecheck('./plots/A2/Extra_Layer/{}.png'.format(title1))
        directories.filecheck('./plots/A2/Extra_Layer/{}.png'.format(title2))
        plot_loss.savefig("./plots/A2/Extra_Layer/{}.png".format(title2),
                          format='png')
        plot_acc.savefig("./plots/A2/Extra_Layer/{}.png".format(title1),
                         format='png')

        # εκτύπωση αποτελεσμάτων
        print(
            f'Results sum (MSE) - Loss {loss_sum / 5} - Accuracy {acc_sum / 5}'
        )
        f.close()
        sys.stdout = sys.__stdout__
        # καθαρισμός μνήμης
        print(f'Clearing session....')
        tensorflow.keras.backend.clear_session()
        plt.close(1)
        plt.close(2)
Exemple #4
0
def a3(ep):
    # αρχικοποίηση directories αποθήκευσης
    directories.A3()

    # GPU support
    physical_devices = tensorflow.config.experimental.list_physical_devices(
        'GPU')
    print("CUDA - Αριθμός διαθέσιμων GPUs:",
          len(tensorflow.config.experimental.list_physical_devices('GPU')))
    tensorflow.config.experimental.set_memory_growth(physical_devices[0], True)

    # αρχικοποίηση μεταβλητών
    features = 784
    classes = 10
    loss_f = ['categorical_crossentropy', 'mean_squared_error']
    h1 = 794
    h2 = 50
    learning_rates = [0.001, 0.001, 0.05, 0.1]

    # φόρτωση mnist από το keras
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    # κάνουμε το mnist reshape
    x_train = x_train.reshape(x_train.shape[0], features)
    x_test = x_test.reshape(x_test.shape[0], features)

    # MinMax scaling
    scaler = preprocessing.MinMaxScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.fit_transform(x_test)

    # ορισμός των labels
    y_train = to_categorical(y_train, classes)
    y_test = to_categorical(y_test, classes)

    # ορισμός input shape για το μοντέλο MLP βάσει των χαρακτηριστικών
    input_shape = (features, )
    for loss_fun in loss_f:
        # Δημιουργία μοντέλου με χρήση του keras API
        model = Sequential()
        # Πρώτο κρυφό επίπεδο
        model.add(Dense(h1, input_shape=input_shape, activation='relu'))
        # Δεύτερο κρυφό επίπεδο
        model.add(Dense(h2, activation='relu'))
        # Επίπεδο εξόδου
        model.add(Dense(classes, activation='softmax'))
        i = 0
        for lrate in learning_rates:
            if i == 0:
                m = 0.2
                i = i + 1
            else:
                m = 0.6
                i = i + 1
            print(
                f'Set SGD optimizer to learning rate={lrate} and momentum={m}')
            opt = tensorflow.keras.optimizers.SGD(lr=lrate,
                                                  momentum=m,
                                                  decay=0.0,
                                                  nesterov=False)

            fname = './logs/A3/results_{}{}_{}.txt'.format(loss_fun, lrate, m)
            directories.filecheck(fname)
            # compile
            model.compile(loss=loss_fun, optimizer=opt, metrics=['accuracy'])

            fold = 1
            loss_sum = 0
            acc_sum = 0
            aval = []
            lval = []
            ltrain = []
            f = open(fname, 'w')
            sys.stdout = f

            # 5-fold CV
            kfold = KFold(5, shuffle=True, random_state=1)
            for train, test in kfold.split(x_train):
                # διαχωρισμός train-test indexes
                xi_train, xi_test = x_train[train], x_train[test]
                yi_train, yi_test = y_train[train], y_train[test]
                print(f' fold # {fold}, TRAIN: {train}, TEST: {test}')

                # fit μοντέλου
                history = model.fit(
                    xi_train,
                    yi_train,
                    epochs=ep,
                    batch_size=200,
                    verbose=1,
                    validation_data=(xi_test, yi_test),
                    callbacks=[
                        tensorflow.keras.callbacks.EarlyStopping(
                            monitor='val_loss', patience=2)
                    ])

                # στατιστικά
                aval.append(np.mean(history.history['val_accuracy']))
                lval.append(np.mean(history.history['val_loss']))
                ltrain.append(np.mean(history.history['loss']))

                # μετρησεις μοντέλου
                results = model.evaluate(x_test, y_test, verbose=1)
                print(
                    f'Αποτελέσματα στο fold # {fold} - Loss: {results[0]} - Accuracy: {results[1]}'
                )

                fold += fold
                # αποθήκευση για προβολή των αποτελεσμάτων 5-fold CV
                loss_sum += results[0]
                acc_sum += results[1]

            # plots
            # accuracy
            plot_acc = plt.figure(1)
            title1 = 'Validation Accuracy, {} model η={}, m={}'.format(
                loss_fun, lrate, m)
            plt.title(title1, loc='center', pad=None)
            plt.plot(aval)
            plt.ylabel('acc')
            plt.xlabel('epoch')

            # loss
            plot_loss = plt.figure(2)
            title2 = 'Loss, {} model η={}, m={}'.format(loss_fun, lrate, m)
            plt.title(title2, loc='center', pad=None)
            # validation loss
            plt.plot(lval)
            # train loss
            plt.plot(ltrain)
            plt.ylabel('loss')
            plt.xlabel('epoch')
            plt.legend(['validation', 'train'], loc='upper left')

            # Save locally
            directories.filecheck('./plots/A3/{}.png'.format(title1))
            directories.filecheck('./plots/A3/{}.png'.format(title2))
            plot_loss.savefig("./plots/A3/{}.png".format(title2), format='png')
            plot_acc.savefig("./plots/A3/{}.png".format(title1), format='png')

            # εκτύπωση αποτελεσμάτων
            print(
                f'Συνολικά Αποτελέσματα - Loss {loss_sum / 5} - Accuracy {acc_sum / 5}'
            )
            # επιστροφή stdout στην κονσόλα
            f.close()
            sys.stdout = sys.__stdout__
            # απελευθερωση μνημης
            print(f'Clearing session....')
            tensorflow.keras.backend.clear_session()
            plt.close(1)
            plt.close(2)
            aval.clear()
            lval.clear()
            ltrain.clear()
Exemple #5
0
# μετρήσεις:
# fit =  fitness scores για τη κάθε γενιά
# fittest = το καλύτερο σκορ στη γενιά
# best results gen = λίστα των καλύτερων σκορ κάθε γενιάς για κάθε τρέξιμο του αλγορίθμου (χρησιμοποιείται στο να ελέγχεται το ποσοστό βελτίωσης σε κάθε τρέξιμο)
# fitness_history = κάθε γραμμή πίνακα αποθηκεύει ανα γενιά την καλύτερη απόδοση του αλγορίθμου στο αντίστοιχο τρέξιμο

for num_indiv in no_of_individuals:

    population = np.ones((num_indiv, 784))

    for crossrate, mutrate in tweaks:

        # άνοιγμα αρχείου αποθήκευσης
        fname = "logs/B2/results_{}_{}_{}.txt".format(num_indiv, crossrate, mutrate)
        directories.filecheck(fname)
        f = open(fname, 'w')
        sys.stdout = f

        # αρχικοποιήσεις
        solution = np.empty((iterations, 784))
        solution_scores = np.empty((iterations, ))
        fitness_history = np.zeros((10, num_gen))
        gens_needed = []
        average = 0

        # GA
        for iter in range(iterations):
            best_results_gen = []

            # ο αρχικός πληθυσμός παράγεται τυχαία
x_test = scaler.fit_transform(x_test)

# ορισμός των labels
y_train = to_categorical(y_train, classes)
y_test = to_categorical(y_test, classes)

# ορισμός input shape για το μοντέλο MLP βάσει των χαρακτηριστικών
input_shape = (features, )

# αρχικοποίηση sum μετρήσεων
loss_sum = 0
acc_sum = 0
# ορισμός directory αποθήκευσης stdout
f_ce = "./logs/A2/Single_Layer/INPUT_results_CE_%s.txt" % h_1
f_mse = "./logs/A2/Single_Layer/INPUT_results_MSE_%s.txt" % h_1
directories.filecheck(f_ce)
directories.filecheck(f_mse)

# δημιουργία μοντέλων με χρήση του keras API
model_ce = Sequential()
model_mse = Sequential()
# πρώτο κρυφό επίπεδο
model_ce.add(Dense(h_1, input_shape=input_shape, activation='relu'))
model_mse.add(Dense(h_1, input_shape=input_shape, activation='relu'))
# επίπεδο εξόδου
model_ce.add(Dense(classes, activation='softmax'))
model_mse.add(Dense(classes, activation='softmax'))

# compile
# crossentropy
model_ce.compile(loss='categorical_crossentropy',