def get_test_data(num_houses):
	devices_types_unsampled={}
	ids_for_devices={}
	db_url='postgresql://*****:*****@db.wiki-energy.org:5432/postgres'
	psda.set_url(db_url)
	schema = 'shared'
	tables= psda.get_table_names(schema)
	print tables
	table=tables[3]
	ids_device_name='air1'
	ids_for_devices[ids_device_name]=psda.get_dataids_with_real_values(schema,table,ids_device_name)

	device_name='air1'
	devices_types_unsampled[device_name]=psda.generate_type_for_appliance_by_dataids(schema,table,device_name,ids_for_devices[ids_device_name][:num_houses])
	device_name='use'
	devices_types_unsampled[device_name]=psda.generate_type_for_appliance_by_dataids(schema,table,device_name,ids_for_devices[ids_device_name][:num_houses])
	

	#Resamples the data
	devices_types={}
	devices_types_unsplit={}
	sample_rate='1T'
	length='D'
	for key in devices_types_unsampled:
	    devices_types_unsplit[key]=devices_types_unsampled[key].resample(sample_rate)
	    #devices_types[key]=devices_types_unsplit[key].split_by(length)
	    devices_types[key]=devices_types_unsplit[key]
	    print "Resampled " + str(key)
	
	return devices_types
def get_type_from_dataset(device_name,schema,table_num,limit=0):
    '''
    Given the device name
    '''

    devices_types={}
    devices_types_unsampled={}
    db_url='postgresql://*****:*****@db.wiki-energy.org:5432/postgres'
    psda.set_url(db_url)
    table='group1_disaggregated_2013_0'+str(table_num)
    ids_for_device=psda.get_dataids_with_real_values(schema,table,device_name)
    if(limit>len(ids_for_device) or limit==0):
        limit=len(ids_for_device)
    device_type_orig=psda.generate_type_for_appliance_by_dataids(schema,
            table,device_name,ids_for_device[:limit])
    return device_type_orig
Exemple #3
0
def get_type_from_dataset(device_name, table_num, limit=0):
    """
    Given the device name
    """

    devices_types = {}
    devices_types_unsampled = {}
    db_url = "postgresql://*****:*****@db.wiki-energy.org:5432/postgres"
    psda.set_url(db_url)
    schema = "shared"
    table = "validated_0" + str(table_num) + "_2014"
    ids_for_device = psda.get_dataids_with_real_values(schema, table, device_name)
    if limit > len(ids_for_device) or limit == 0:
        limit = len(ids_for_device)
    device_type_orig = psda.generate_type_for_appliance_by_dataids(schema, table, device_name, ids_for_device[:limit])
    return device_type_orig
Exemple #4
0
def get_type_from_dataset(device_name, schema, table_num, limit=0):
    '''
    Given the device name
    '''

    devices_types = {}
    devices_types_unsampled = {}
    db_url = 'postgresql://*****:*****@db.wiki-energy.org:5432/postgres'
    psda.set_url(db_url)
    table = 'group1_disaggregated_2013_0' + str(table_num)
    ids_for_device = psda.get_dataids_with_real_values(schema, table,
                                                       device_name)
    if (limit > len(ids_for_device) or limit == 0):
        limit = len(ids_for_device)
    device_type_orig = psda.generate_type_for_appliance_by_dataids(
        schema, table, device_name, ids_for_device[:limit])
    return device_type_orig
Exemple #5
0
def get_test_data(num_houses):
    devices_types_unsampled = {}
    ids_for_devices = {}
    db_url = 'postgresql://*****:*****@db.wiki-energy.org:5432/postgres'
    psda.set_url(db_url)
    schema = 'shared'
    tables = psda.get_table_names(schema)
    print tables
    table = tables[3]
    ids_device_name = 'air1'
    ids_for_devices[ids_device_name] = psda.get_dataids_with_real_values(
        schema, table, ids_device_name)

    device_name = 'air1'
    devices_types_unsampled[
        device_name] = psda.generate_type_for_appliance_by_dataids(
            schema, table, device_name,
            ids_for_devices[ids_device_name][:num_houses])
    device_name = 'use'
    devices_types_unsampled[
        device_name] = psda.generate_type_for_appliance_by_dataids(
            schema, table, device_name,
            ids_for_devices[ids_device_name][:num_houses])

    #Resamples the data
    devices_types = {}
    devices_types_unsplit = {}
    sample_rate = '1T'
    length = 'D'
    for key in devices_types_unsampled:
        devices_types_unsplit[key] = devices_types_unsampled[key].resample(
            sample_rate)
        #devices_types[key]=devices_types_unsplit[key].split_by(length)
        devices_types[key] = devices_types_unsplit[key]
        print "Resampled " + str(key)

    return devices_types
    parser = argparse.ArgumentParser(description='create appliance detection datasets for pylearn2.')
    parser.add_argument('data_dir',type=str,
            help='directory in which to store data')
    parser.add_argument('prefix',type=str,
            help='prefix for dataset files')
    args = parser.parse_args()

    schema = 'shared'
    tables = [u'validated_01_2014',
              u'validated_02_2014',
              u'validated_03_2014',
              u'validated_04_2014',
              u'validated_05_2014',]

    db_url = "postgresql://*****:*****@db.wiki-energy.org:5432/postgres"
    psda.set_url(db_url)

    window_length = 10
    window_stride = 1
    prediction_index = 6

    all_ids = []
    for month in range(5):
        air1_ids = psda.get_dataids_with_real_values(schema,tables[month],'air1')
        furnace1_ids = psda.get_dataids_with_real_values(schema,tables[month],'furnace1')
        all_ids.append(air1_ids)
        all_ids.append(furnace1_ids)
    common_ids = da.utils.get_common_ids(all_ids)

    n = len(common_ids)
    n_train = n/2
Exemple #7
0
                        type=str,
                        help='directory in which to store data')
    parser.add_argument('prefix', type=str, help='prefix for dataset files')
    args = parser.parse_args()

    schema = 'shared'
    tables = [
        u'validated_01_2014',
        u'validated_02_2014',
        u'validated_03_2014',
        u'validated_04_2014',
        u'validated_05_2014',
    ]

    db_url = "postgresql:/USERNAME:[email protected]:5432/postgres"
    psda.set_url(db_url)

    window_length = 10
    window_stride = 1
    prediction_index = 6

    all_ids = []
    for month in range(5):
        air1_ids = psda.get_dataids_with_real_values(schema, tables[month],
                                                     'air1')
        furnace1_ids = psda.get_dataids_with_real_values(
            schema, tables[month], 'furnace1')
        all_ids.append(air1_ids)
        all_ids.append(furnace1_ids)
    common_ids = da.utils.get_common_ids(all_ids)
Exemple #8
0
 def setUp(self):
     psda.set_url(settings.PECAN_STREET_DB_URL)
Exemple #9
0
import sys
sys.path.append('../')
#print sys.path
'''

   An interface for adapting Pecan Street data.

'''

import disaggregator.PecanStreetDatasetAdapter as pecan
import pickle
import disaggregator.utils as utils

# Open db connection
db_url = "postgresql://*****:*****@db.wiki-energy.org:5432/postgres"
pecan.set_url(db_url)

schema_names = {
    'curated': '\"PecanStreet_CuratedSets\"',
    'raw': '\"PecanStreet_RawData\"',
    'shared': '\"PecanStreet_SharedData\"'
}

print '''There are two datasets you can view right now, one is called curated,
and one is called shared. The shared data set has one minute interval data
for Jan-May 2014, for about 200 homes.

The curated data set has 15 minute interval data for 2013 and 2012 (the largest
interval lasts from 12/12-11/13.

If you want to analyze longer term data, the curated set is recommended,
#print sys.path

'''

   An interface for adapting Pecan Street data.

'''


import disaggregator.PecanStreetDatasetAdapter as pecan
import pickle
import disaggregator.utils as utils

# Open db connection
db_url = "postgresql://*****:*****@db.wiki-energy.org:5432/postgres"
pecan.set_url(db_url)

schema_names = {'curated':'\"PecanStreet_CuratedSets\"',
        'raw':'\"PecanStreet_RawData\"',
        'shared':'\"PecanStreet_SharedData\"'}

print '''There are two datasets you can view right now, one is called curated,
and one is called shared. The shared data set has one minute interval data
for Jan-May 2014, for about 200 homes.

The curated data set has 15 minute interval data for 2013 and 2012 (the largest
interval lasts from 12/12-11/13.

If you want to analyze longer term data, the curated set is recommended,
whereas if you want shorter but more frequent data the shared set
is recommended.
 def setUp(self):
     psda.set_url(settings.PECAN_STREET_DB_URL)