def test_tree_to_tree_same_base(self):
        h1 = np.random.rand(16)
        h1 /= h1.sum()

        h1s = [h1]
        insert_1 = [0.25]
        insert_2 = [0.75]
        for i in range(1, 3):
            print(f"Tree to Tree {i+1}D: same base", end="")
            h1s.append(h1)
            insert_1.append(0.25)
            insert_2.append(0.75)
            mesh1 = discretize.TreeMesh(h1s)
            mesh1.insert_cells([insert_1], [4])
            mesh2 = discretize.TreeMesh(h1s)
            mesh2.insert_cells([insert_2], [4])

            in_put = np.random.rand(mesh1.nC)
            out_put = np.empty(mesh2.nC)
            # test the three ways of calling...
            out1 = volume_average(mesh1, mesh2, in_put, out_put)
            assert_array_equal(out1, out_put)

            out2 = volume_average(mesh1, mesh2, in_put)
            assert_allclose(out1, out2)

            Av = volume_average(mesh1, mesh2)
            out3 = Av @ in_put
            assert_allclose(out1, out3)

            vol1 = np.sum(mesh1.vol * in_put)
            vol2 = np.sum(mesh2.vol * out3)
            print(vol1, vol2)
            self.assertAlmostEqual(vol1, vol2)
Exemple #2
0
    def test_refine_func(self):
        mesh1 = discretize.TreeMesh((16, 16, 16))
        mesh2 = discretize.TreeMesh((16, 16, 16))

        mesh1.refine(-1)
        mesh2.refine(mesh2.max_level)

        self.assertEqual(mesh1.nC, mesh2.nC)
Exemple #3
0
    def test_insert_point(self):
        mesh1 = discretize.TreeMesh((16, 16, 16))
        mesh2 = discretize.TreeMesh((16, 16, 16))

        mesh1.insert_cells([[8, 8, 8]], [-1])
        mesh2.insert_cells([[8, 8, 8]], [mesh2.max_level])

        self.assertEqual(mesh1.nC, mesh2.nC)
Exemple #4
0
    def test_refine_ball(self):
        mesh1 = discretize.TreeMesh((16, 16, 16))
        mesh2 = discretize.TreeMesh((16, 16, 16))

        centers = [[8, 8, 8]]
        r_s = [3]
        mesh1.refine_ball(centers, r_s, [-1])
        mesh2.refine_ball(centers, r_s, [mesh2.max_level])

        self.assertEqual(mesh1.nC, mesh2.nC)
Exemple #5
0
    def test_refine_box(self):
        mesh1 = discretize.TreeMesh((16, 16, 16))
        mesh2 = discretize.TreeMesh((16, 16, 16))

        x0s = [[4, 4, 4]]
        x1s = [[8, 8, 8]]
        mesh1.refine_box(x0s, x1s, [-1])
        mesh2.refine_box(x0s, x1s, [mesh2.max_level])

        self.assertEqual(mesh1.nC, mesh2.nC)
    def test_errors(self):
        h1 = np.random.rand(16)
        h1 /= h1.sum()
        h2 = np.random.rand(16)
        h2 /= h2.sum()
        mesh1D = discretize.TensorMesh([h1])
        mesh2D = discretize.TensorMesh([h1, h1])
        mesh3D = discretize.TensorMesh([h1, h1, h1])

        hr = np.r_[1, 1, 0.5]
        hz = np.r_[2, 1]
        meshCyl = discretize.CylMesh([hr, 1, hz], np.r_[0.0, 0.0, 0.0])
        mesh2 = discretize.TreeMesh([h2, h2])
        mesh2.insert_cells([0.75, 0.75], [4])

        with self.assertRaises(TypeError):
            # Gives a wrong typed object to the function
            volume_average(mesh1D, h1)
        with self.assertRaises(NotImplementedError):
            # Gives a wrong typed mesh
            volume_average(meshCyl, mesh2)
        with self.assertRaises(ValueError):
            # Gives mismatching mesh dimensions
            volume_average(mesh2D, mesh3D)

        model1 = np.random.randn(mesh2D.nC)
        bad_model1 = np.random.randn(3)
        bad_model2 = np.random.rand(1)
        # gives input values with incorrect lengths
        with self.assertRaises(ValueError):
            volume_average(mesh2D, mesh2, bad_model1)
        with self.assertRaises(ValueError):
            volume_average(mesh2D, mesh2, model1, bad_model2)
    def doTestFace(self, h, rep, fast, meshType, invProp=False, invMat=False):
        if meshType == "Curv":
            hRect = discretize.utils.exampleLrmGrid(h, "rotate")
            mesh = discretize.CurvilinearMesh(hRect)
        elif meshType == "Tree":
            mesh = discretize.TreeMesh(h, levels=3)
            mesh.refine(lambda xc: 3)
            mesh.number(balance=False)
        elif meshType == "Tensor":
            mesh = discretize.TensorMesh(h)
        v = np.random.rand(mesh.nF)
        sig = np.random.rand(1) if rep is 0 else np.random.rand(mesh.nC * rep)

        def fun(sig):
            M = mesh.getFaceInnerProduct(sig, invProp=invProp, invMat=invMat)
            Md = mesh.getFaceInnerProductDeriv(sig,
                                               invProp=invProp,
                                               invMat=invMat,
                                               doFast=fast)
            return M * v, Md(v)

        print(
            meshType,
            "Face",
            h,
            rep,
            fast,
            ("harmonic" if invProp and invMat else "standard"),
        )
        return discretize.tests.checkDerivative(fun, sig, num=5, plotIt=False)
Exemple #8
0
 def setUp(self):
     h = np.ones(16)
     mesh = discretize.TreeMesh([h, 2 * h, 3 * h])
     cell_points = np.array([[0.5, 0.5, 0.5], [0.5, 2.5, 0.5]])
     cell_levels = np.array([4, 4])
     mesh.insert_cells(cell_points, cell_levels)
     self.mesh = mesh
def run(plotIt=True, n=60):

    M = discretize.TreeMesh([[(1, 16)], [(1, 16)]], levels=4)
    M.insert_cells(np.array([5.0, 5.0]), np.array([3]))
    M.number()

    if plotIt:
        fig, axes = plt.subplots(2, 1, figsize=(10, 10))

        M.plotGrid(centers=True, nodes=False, ax=axes[0])
        axes[0].axis("off")
        axes[0].set_title("Simple QuadTree Mesh")
        axes[0].set_xlim([-1, 17])
        axes[0].set_ylim([-1, 17])

        for ii, loc in zip(range(M.nC), M.gridCC):
            axes[0].text(loc[0] + 0.2, loc[1], "{0:d}".format(ii), color="r")

        axes[0].plot(M.gridFx[:, 0], M.gridFx[:, 1], "g>")
        for ii, loc in zip(range(M.nFx), M.gridFx):
            axes[0].text(loc[0] + 0.2, loc[1], "{0:d}".format(ii), color="g")

        axes[0].plot(M.gridFy[:, 0], M.gridFy[:, 1], "m^")
        for ii, loc in zip(range(M.nFy), M.gridFy):
            axes[0].text(loc[0] + 0.2,
                         loc[1] + 0.2,
                         "{0:d}".format((ii + M.nFx)),
                         color="m")

        axes[1].spy(M.faceDiv)
        axes[1].set_title("Face Divergence")
        axes[1].set_ylabel("Cell Number")
        axes[1].set_xlabel("Face Number")
Exemple #10
0
    def test_h_gridded_3D(self):
        hx, hy, hz = np.ones(4), np.r_[1.0, 2.0, 3.0, 4.0], 2 * np.ones(4)

        M = discretize.TreeMesh([hx, hy, hz])

        def refinefcn(cell):
            xyz = cell.center
            d = (xyz**2).sum()**0.5
            if d < 3:
                return 2
            return 1

        M.refine(refinefcn)
        H = M.h_gridded

        test_hx = np.all(H[:,
                           0] == np.r_[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                                       2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, ])
        test_hy = np.all(H[:,
                           1] == np.r_[1.0, 1.0, 2.0, 2.0, 1.0, 1.0, 2.0, 2.0,
                                       3.0, 7.0, 7.0, 3.0, 3.0, 7.0, 7.0, ])
        test_hz = np.all(H[:,
                           2] == np.r_[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
                                       4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, ])

        self.assertTrue(test_hx and test_hy and test_hz)
Exemple #11
0
    def setUp(self):
        def topo(x):
            return np.sin(x * (2. * np.pi)) * 0.3 + 0.5

        def function(cell):
            r = cell.center - np.array([0.5] * len(cell.center))
            dist1 = np.sqrt(r.dot(r)) - 0.08
            dist2 = np.abs(cell.center[-1] - topo(cell.center[0]))

            dist = min([dist1, dist2])
            # if dist < 0.05:
            #     return 5
            if dist < 0.05:
                return 6
            if dist < 0.2:
                return 5
            if dist < 0.3:
                return 4
            if dist < 1.0:
                return 3
            else:
                return 0

        M = discretize.TreeMesh([64, 64], levels=6)
        M.refine(function)
        self.M = M
Exemple #12
0
    def test_faceDiv(self):

        hx, hy = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8]
        T = discretize.TreeMesh([hx, hy], levels=2)
        T.refine(lambda xc: 2)
        # T.plotGrid(showIt=True)
        M = discretize.TensorMesh([hx, hy])
        self.assertEqual(M.nC, T.nC)
        self.assertEqual(M.nF, T.nF)
        self.assertEqual(M.nFx, T.nFx)
        self.assertEqual(M.nFy, T.nFy)
        self.assertEqual(M.nE, T.nE)
        self.assertEqual(M.nEx, T.nEx)
        self.assertEqual(M.nEy, T.nEy)

        self.assertTrue(np.allclose(M.area, T.permuteF * T.area))
        self.assertTrue(np.allclose(M.edge, T.permuteE * T.edge))
        self.assertTrue(np.allclose(M.vol, T.permuteCC * T.vol))

        # plt.subplot(211).spy(M.faceDiv)
        # plt.subplot(212).spy(T.permuteCC*T.faceDiv*T.permuteF.T)
        # plt.show()

        self.assertEqual(
            (M.faceDiv - T.permuteCC * T.faceDiv * T.permuteF.T).nnz, 0)
def run(plotIt=True, n=60):

    M = discretize.TreeMesh([[(1, 16)], [(1, 16)]], levels=4)
    M.insert_cells(np.array([5., 5.]), np.array([3]))
    M.number()

    if plotIt:
        fig, axes = plt.subplots(2, 1, figsize=(10, 10))

        M.plotGrid(centers=True, nodes=False, ax=axes[0])
        axes[0].axis('off')
        axes[0].set_title('Simple QuadTree Mesh')
        axes[0].set_xlim([-1, 17])
        axes[0].set_ylim([-1, 17])

        for ii, loc in zip(range(M.nC), M.gridCC):
            axes[0].text(loc[0]+0.2, loc[1], '{0:d}'.format(ii), color='r')

        axes[0].plot(M.gridFx[:, 0], M.gridFx[:, 1], 'g>')
        for ii, loc in zip(range(M.nFx), M.gridFx):
            axes[0].text(loc[0]+0.2, loc[1], '{0:d}'.format(ii), color='g')

        axes[0].plot(M.gridFy[:, 0], M.gridFy[:, 1], 'm^')
        for ii, loc in zip(range(M.nFy), M.gridFy):
            axes[0].text(
                loc[0]+0.2, loc[1]+0.2, '{0:d}'.format(
                    (ii+M.nFx)
                ),
                color='m'
            )

        axes[1].spy(M.faceDiv)
        axes[1].set_title('Face Divergence')
        axes[1].set_ylabel('Cell Number')
        axes[1].set_xlabel('Face Number')
Exemple #14
0
    def test_VectorIdenties(self):
        hx, hy, hz = [[(1, 4)], [(1, 4)], [(1, 4)]]

        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        Mr = discretize.TensorMesh([hx, hy, hz])
        M.refine(2)  #Why wasn't this here before?

        self.assertTrue(np.allclose((M.faceDiv * M.edgeCurl).data, 0))

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11,
                                                                   12]

        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        Mr = discretize.TensorMesh([hx, hy, hz])
        M.refine(2)
        A1 = M.faceDiv * M.edgeCurl
        A2 = Mr.faceDiv * Mr.edgeCurl

        self.assertTrue(len(A1.data) == 0 or np.allclose(A1.data, 0))
        self.assertTrue(len(A2.data) == 0 or np.allclose(A2.data, 0))
    def test_tree_to_tree_sub(self):
        h1 = np.ones(32)
        h2 = np.ones(16)

        h1s = [h1]
        h2s = [h2]
        insert_1 = [12]
        insert_2 = [4]
        for i in range(1, 3):
            print(f"Tree to smaller Tree {i+1}D: ", end="")
            h1s.append(h1)
            h2s.append(h2)
            insert_1.append(12)
            insert_2.append(4)
            mesh1 = discretize.TreeMesh(h1s)
            mesh1.insert_cells([insert_1], [4])
            mesh2 = discretize.TreeMesh(h2s)
            mesh2.insert_cells([insert_2], [4])

            in_put = np.random.rand(mesh1.nC)
            out_put = np.empty(mesh2.nC)
            # test the three ways of calling...
            out1 = volume_average(mesh1, mesh2, in_put, out_put)
            assert_array_equal(out1, out_put)

            out2 = volume_average(mesh1, mesh2, in_put)
            assert_allclose(out1, out2)

            Av = volume_average(mesh1, mesh2)
            out3 = Av @ in_put
            assert_allclose(out1, out3)

            # get cells in extent of smaller mesh
            cells = mesh1.gridCC < [16] * (i + 1)
            if i > 0:
                cells = np.all(cells, axis=1)

            vol1 = np.sum(mesh1.vol[cells] * in_put[cells])
            vol2 = np.sum(mesh2.vol * out3)
            print(vol1, vol2)
            self.assertAlmostEqual(vol1, vol2)
Exemple #16
0
    def test_edgeCurl(self):

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11,
                                                                   12]
        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        M.refine(lambda xc: 2)

        Mr = discretize.TensorMesh([hx, hy, hz])

        A = Mr.edgeCurl - M.permuteF * M.edgeCurl * M.permuteE.T

        self.assertTrue(len(A.data) == 0 or np.allclose(A.data, 0))
Exemple #17
0
    def test_serialization(self):
        hx, hy = np.r_[1.0, 2, 3, 4], np.r_[5.0, 6, 7, 8]
        mesh1 = discretize.TreeMesh([hx, hy], levels=2, x0=np.r_[-1, -1])
        mesh1.refine(2)
        mesh2 = discretize.TreeMesh.deserialize(mesh1.serialize())
        self.assertTrue(np.all(mesh1.x0 == mesh2.x0))
        self.assertTrue(np.all(mesh1.shape_cells == mesh2.shape_cells))
        self.assertTrue(np.all(mesh1.gridCC == mesh2.gridCC))

        mesh1.x0 = np.r_[-2.0, 2]
        mesh2 = discretize.TreeMesh.deserialize(mesh1.serialize())
        self.assertTrue(np.all(mesh1.x0 == mesh2.x0))
Exemple #18
0
def run(plotIt=True):
    M = discretize.TreeMesh([32, 32])
    M.refine(3)

    def refine(cell):
        xyz = cell.center
        for i in range(3):
            if np.abs(np.sin(xyz[0] * np.pi * 2) * 0.5 + 0.5 -
                      xyz[1]) < 0.2 * i:
                return 6 - i
        return 0

    M.refine(refine)
    if plotIt:
        M.plotGrid()
def run(plotIt=True):
    M = discretize.TreeMesh([8, 8])

    def refine(cell):
        xyz = cell.center
        dist = ((xyz - [0.25, 0.25])**2).sum()**0.5
        if dist < 0.25:
            return 3
        return 2

    M.refine(refine)
    if plotIt:
        M.plotGrid(nodes=True, cells=True, facesX=True)
        plt.legend(('Grid', 'Cell Centers', 'Nodes', 'Hanging Nodes',
                    'X faces', 'Hanging X faces'))
Exemple #20
0
    def test_counts(self):
        nc = 8
        h1 = np.random.rand(nc) * nc * 0.5 + nc * 0.5
        h2 = np.random.rand(nc) * nc * 0.5 + nc * 0.5
        h = [hi / np.sum(hi) for hi in [h1, h2]]  # normalize
        M = discretize.TreeMesh(h)
        points = np.array([[0.1, 0.1, 0.3]])
        level = np.array([3])

        M.insert_cells(points, level)
        M.number()

        self.assertEqual(M.nhFx, 4)
        self.assertEqual(M.nFx, 12)

        self.assertTrue(np.allclose(M.vol.sum(), 1.0))
Exemple #21
0
    def setUp(self):
        def function(cell):
            r = cell.center - np.array([0.5] * len(cell.center))
            dist = np.sqrt(r.dot(r))
            if dist < 0.2:
                return 4
            if dist < 0.3:
                return 3
            if dist < 1.0:
                return 2
            else:
                return 0

        M = discretize.TreeMesh([16, 16, 16], levels=4)
        M.refine(function)
        # M.plotGrid(showIt=True)
        self.M = M
Exemple #22
0
    def test_counts(self):
        nc = 8
        h1 = np.random.rand(nc) * nc * 0.5 + nc * 0.5
        h2 = np.random.rand(nc) * nc * 0.5 + nc * 0.5
        h3 = np.random.rand(nc) * nc * 0.5 + nc * 0.5
        h = [hi / np.sum(hi) for hi in [h1, h2, h3]]  # normalize
        M = discretize.TreeMesh(h, levels=3)
        points = np.array([[0.2, 0.1, 0.7], [0.8, 0.4, 0.2]])
        levels = np.array([1, 2])
        M.insert_cells(points, levels)
        M.number()
        # M.plotGrid(showIt=True)
        self.assertEqual(M.nhFx, 4)
        self.assertTrue(M.nFx, 19)
        self.assertTrue(M.nC, 15)

        self.assertTrue(np.allclose(M.vol.sum(), 1.0))
Exemple #23
0
def doTestEdge(h, rep, fast, meshType, invProp=False, invMat=False):
    if meshType == 'Curv':
        hRect = discretize.utils.exampleLrmGrid(h,'rotate')
        mesh = discretize.CurvilinearMesh(hRect)
    elif meshType == 'Tree':
        mesh = discretize.TreeMesh(h, levels=3)
        mesh.refine(lambda xc: 3)
    elif meshType == 'Tensor':
        mesh = discretize.TensorMesh(h)
    v = np.random.rand(mesh.nE)
    sig = np.random.rand(1) if rep is 0 else np.random.rand(mesh.nC*rep)
    def fun(sig):
        M  = mesh.getEdgeInnerProduct(sig, invProp=invProp, invMat=invMat)
        Md = mesh.getEdgeInnerProductDeriv(sig, invProp=invProp, invMat=invMat, doFast=fast)
        return M*v, Md(v)
    print(meshType, 'Edge', h, rep, fast, ('harmonic' if invProp and invMat else 'standard'))
    return discretize.Tests.checkDerivative(fun, sig, num=5, plotIt=False)
Exemple #24
0
def run(plotIt=True):
    M = discretize.TensorMesh([32, 32])
    v = discretize.utils.random_model(M.vnC, seed=789)
    v = discretize.utils.mkvc(v)

    O = discretize.TreeMesh([32, 32])

    def function(cell):
        if (
            cell.center[0] < 0.75
            and cell.center[0] > 0.25
            and cell.center[1] < 0.75
            and cell.center[1] > 0.25
        ):
            return 5
        if (
            cell.center[0] < 0.9
            and cell.center[0] > 0.1
            and cell.center[1] < 0.9
            and cell.center[1] > 0.1
        ):
            return 4
        return 3

    O.refine(function)

    P = M.getInterpolationMat(O.gridCC, "CC")

    ov = P * v

    if not plotIt:
        return

    fig, axes = plt.subplots(1, 2, figsize=(10, 5))

    out = M.plotImage(v, grid=True, ax=axes[0])
    cb = plt.colorbar(out[0], ax=axes[0])
    cb.set_label("Random Field")
    axes[0].set_title("TensorMesh")

    out = O.plotImage(ov, grid=True, ax=axes[1], clim=[0, 1])
    cb = plt.colorbar(out[0], ax=axes[1])
    cb.set_label("Random Field")
    axes[1].set_title("TreeMesh")
Exemple #25
0
    def test_h_gridded_2D(self):
        hx, hy = np.ones(4), np.r_[1., 2., 3., 4.]

        M = discretize.TreeMesh([hx, hy])

        def refinefcn(cell):
            xyz = cell.center
            d = (xyz**2).sum()**0.5
            if d < 3:
                return 2
            return 1

        M.refine(refinefcn)
        H = M.h_gridded

        test_hx = np.all(H[:, 0] == np.r_[1., 1., 1., 1., 2., 2., 2.])
        test_hy = np.all(H[:, 1] == np.r_[1., 1., 2., 2., 3., 7., 7.])

        self.assertTrue(test_hx and test_hy)
Exemple #26
0
    def test_faceInnerProduct(self):

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11,
                                                                   12]
        # hx, hy, hz = [[(1, 4)], [(1, 4)], [(1, 4)]]

        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        M.refine(lambda xc: 2)
        # M.plotGrid(showIt=True)
        Mr = discretize.TensorMesh([hx, hy, hz])

        # print(M.nC, M.nF, M.getFaceInnerProduct().shape, M.permuteF.shape)
        A_face = Mr.getFaceInnerProduct(
        ) - M.permuteF * M.getFaceInnerProduct() * M.permuteF.T
        A_edge = Mr.getEdgeInnerProduct(
        ) - M.permuteE * M.getEdgeInnerProduct() * M.permuteE.T

        self.assertTrue(len(A_face.data) == 0 or np.allclose(A_face.data, 0))
        self.assertTrue(len(A_edge.data) == 0 or np.allclose(A_edge.data, 0))
    def test_pickle2D(self):
        mesh0 = discretize.TreeMesh([8, 8])

        def refine(cell):
            xyz = cell.center
            dist = ((xyz - 0.25)**2).sum()**0.5
            if dist < 0.25:
                return 3
            return 2

        mesh0.refine(refine)

        byte_string = pickle.dumps(mesh0)
        mesh1 = pickle.loads(byte_string)

        self.assertEqual(mesh0.nC, mesh1.nC)
        self.assertEqual(mesh0.__str__(), mesh1.__str__())
        self.assertTrue(np.allclose(mesh0.gridCC, mesh1.gridCC))
        self.assertTrue(np.allclose(np.array(mesh0.h), np.array(mesh1.h)))
        print("Pickling of 2D TreeMesh is working")
    def test_dic_serialize3D(self):
        mesh0 = discretize.TreeMesh([8, 8, 8])

        def refine(cell):
            xyz = cell.center
            dist = ((xyz - 0.25)**2).sum()**0.5
            if dist < 0.25:
                return 3
            return 2

        mesh0.refine(refine)

        mesh_dict = mesh0.serialize()
        mesh1 = discretize.TreeMesh.deserialize(mesh_dict)

        self.assertEqual(mesh0.nC, mesh1.nC)
        self.assertEqual(mesh0.__str__(), mesh1.__str__())
        self.assertTrue(np.allclose(mesh0.gridCC, mesh1.gridCC))
        self.assertTrue(np.allclose(np.array(mesh0.h), np.array(mesh1.h)))
        print("dic serialize 3D is working")
def run(plotIt=True):
    M = discretize.TreeMesh([8, 8])

    def refine(cell):
        xyz = cell.center
        dist = ((xyz - [0.25, 0.25])**2).sum()**0.5
        if dist < 0.25:
            return 3
        return 2

    M.refine(refine)
    if plotIt:
        M.plotGrid(nodes=True, centers=True, faces_x=True)
        plt.legend((
            "Nodes",
            "Hanging Nodes",
            "Cell Centers",
            "X faces",
            "Hanging X faces",
            "Grid",
        ))
Exemple #30
0
    def test_faceDiv(self):

        hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11,
                                                                   12]
        M = discretize.TreeMesh([hx, hy, hz], levels=2)
        M.refine(lambda xc: 2)
        # M.plotGrid(showIt=True)
        Mr = discretize.TensorMesh([hx, hy, hz])
        self.assertEqual(M.nC, Mr.nC)
        self.assertEqual(M.nF, Mr.nF)
        self.assertEqual(M.nFx, Mr.nFx)
        self.assertEqual(M.nFy, Mr.nFy)
        self.assertEqual(M.nE, Mr.nE)
        self.assertEqual(M.nEx, Mr.nEx)
        self.assertEqual(M.nEy, Mr.nEy)

        self.assertTrue(np.allclose(Mr.area, M.permuteF * M.area))
        self.assertTrue(np.allclose(Mr.edge, M.permuteE * M.edge))
        self.assertTrue(np.allclose(Mr.vol, M.permuteCC * M.vol))

        A = Mr.faceDiv - M.permuteCC * M.faceDiv * M.permuteF.T
        self.assertTrue(np.allclose(A.data, 0))