Exemple #1
0
    def test_cases(self):
        for constrained in self.constrained_cases:
            if type(constrained) == list:
                cov = np.eye(constrained[0].shape[0])
            else:
                cov = np.eye(constrained.shape[0])
            unconstrained, _ = tools.unconstrain_stationary_multivariate(constrained, cov)
            reconstrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov)
            assert_allclose(reconstrained, constrained)

        for unconstrained in self.unconstrained_cases:
            if type(unconstrained) == list:
                cov = np.eye(unconstrained[0].shape[0])
            else:
                cov = np.eye(unconstrained.shape[0])
            constrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov)
            reunconstrained, _ = tools.unconstrain_stationary_multivariate(constrained, cov)
            # Note: low tolerance comes from last example in unconstrained_cases,
            # but is not a real problem
            assert_allclose(reunconstrained, unconstrained, atol=1e-4)
Exemple #2
0
    def test_cases(self):
        for constrained in self.constrained_cases:
            if type(constrained) == list:
                cov = np.eye(constrained[0].shape[0])
            else:
                cov = np.eye(constrained.shape[0])
            unconstrained, _ = tools.unconstrain_stationary_multivariate(
                constrained, cov)
            reconstrained, _ = tools.constrain_stationary_multivariate(
                unconstrained, cov)
            assert_allclose(reconstrained, constrained)

        for unconstrained in self.unconstrained_cases:
            if type(unconstrained) == list:
                cov = np.eye(unconstrained[0].shape[0])
            else:
                cov = np.eye(unconstrained.shape[0])
            constrained, _ = tools.constrain_stationary_multivariate(
                unconstrained, cov)
            reunconstrained, _ = tools.unconstrain_stationary_multivariate(
                constrained, cov)
            # Note: low tolerance comes from last example in unconstrained_cases,
            # but is not a real problem
            assert_allclose(reunconstrained, unconstrained, atol=1e-4)
Exemple #3
0
    def untransform_params(self, constrained):
        """
        Transform constrained parameters used in likelihood evaluation
        to unconstrained parameters used by the optimizer.

        Parameters
        ----------
        constrained : array_like
            Array of constrained parameters used in likelihood evalution, to be
            transformed.

        Returns
        -------
        unconstrained : array_like
            Array of unconstrained parameters used by the optimizer.
        """
        constrained = np.array(constrained, ndmin=1)
        unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype)

        # 1. Intercept terms: nothing to do
        unconstrained[self._params_trend] = constrained[self._params_trend]

        # 2. AR terms: optionally were forced to be stationary
        if self.k_ar > 0 and self.enforce_stationarity:
            # Create the state covariance matrix
            if self.error_cov_type == 'diagonal':
                state_cov = np.diag(constrained[self._params_state_cov])
            elif self.error_cov_type == 'unstructured':
                state_cov_lower = np.zeros(self.ssm['state_cov'].shape,
                                           dtype=constrained.dtype)
                state_cov_lower[self._idx_lower_state_cov] = (
                    constrained[self._params_state_cov])
                state_cov = np.dot(state_cov_lower, state_cov_lower.T)

            # Transform the parameters
            coefficients = constrained[self._params_ar].reshape(
                self.k_endog, self.k_endog * self.k_ar)
            unconstrained_matrices, variance = (
                unconstrain_stationary_multivariate(coefficients, state_cov))
            unconstrained[self._params_ar] = unconstrained_matrices.ravel()
        else:
            unconstrained[self._params_ar] = constrained[self._params_ar]

        # 3. MA terms: optionally were forced to be invertible
        if self.k_ma > 0 and self.enforce_invertibility:
            # Transform the parameters, using an identity variance matrix
            state_cov = np.eye(self.k_endog, dtype=constrained.dtype)
            coefficients = constrained[self._params_ma].reshape(
                self.k_endog, self.k_endog * self.k_ma)
            unconstrained_matrices, variance = (
                unconstrain_stationary_multivariate(coefficients, state_cov))
            unconstrained[self._params_ma] = unconstrained_matrices.ravel()
        else:
            unconstrained[self._params_ma] = constrained[self._params_ma]

        # 4. Regression terms: nothing to do
        unconstrained[self._params_regression] = (
            constrained[self._params_regression])

        # 5. State covariance terms
        # If we have variances, then these were forced to be positive
        if self.error_cov_type == 'diagonal':
            unconstrained[self._params_state_cov] = (
                constrained[self._params_state_cov]**0.5)
        # Otherwise, nothing needs to be done
        elif self.error_cov_type == 'unstructured':
            unconstrained[self._params_state_cov] = (
                constrained[self._params_state_cov])

        # 5. Measurement error variance terms
        if self.measurement_error:
            # These were forced to be positive
            unconstrained[self._params_obs_cov] = (
                constrained[self._params_obs_cov]**0.5)

        return unconstrained
Exemple #4
0
 def test_cases(self):
     for constrained, error_variance, unconstrained in self.cases:
         result = tools.unconstrain_stationary_multivariate(
             constrained, error_variance)
         assert_allclose(result[0], unconstrained)
Exemple #5
0
 def test_cases(self):
     for constrained, error_variance, unconstrained in self.cases:
         result = tools.unconstrain_stationary_multivariate(
             constrained, error_variance)
         assert_allclose(result[0], unconstrained)
Exemple #6
0
    def untransform_params(self, constrained):
        """
        Transform constrained parameters used in likelihood evaluation
        to unconstrained parameters used by the optimizer.

        Parameters
        ----------
        constrained : array_like
            Array of constrained parameters used in likelihood evalution, to be
            transformed.

        Returns
        -------
        unconstrained : array_like
            Array of unconstrained parameters used by the optimizer.
        """
        constrained = np.array(constrained, ndmin=1)
        unconstrained = np.zeros(constrained.shape, dtype=constrained.dtype)

        # 1. Intercept terms: nothing to do
        unconstrained[self._params_trend] = constrained[self._params_trend]

        # 2. AR terms: optionally were forced to be stationary
        if self.k_ar > 0 and self.enforce_stationarity:
            # Create the state covariance matrix
            if self.error_cov_type == 'diagonal':
                state_cov = np.diag(constrained[self._params_state_cov])
            elif self.error_cov_type == 'unstructured':
                state_cov_lower = np.zeros(self.ssm['state_cov'].shape,
                                           dtype=constrained.dtype)
                state_cov_lower[self._idx_lower_state_cov] = (
                    constrained[self._params_state_cov])
                state_cov = np.dot(state_cov_lower, state_cov_lower.T)

            # Transform the parameters
            coefficients = constrained[self._params_ar].reshape(
                self.k_endog, self.k_endog * self.k_ar)
            unconstrained_matrices, variance = (
                unconstrain_stationary_multivariate(coefficients, state_cov))
            unconstrained[self._params_ar] = unconstrained_matrices.ravel()
        else:
            unconstrained[self._params_ar] = constrained[self._params_ar]

        # 3. MA terms: optionally were forced to be invertible
        if self.k_ma > 0 and self.enforce_invertibility:
            # Transform the parameters, using an identity variance matrix
            state_cov = np.eye(self.k_endog, dtype=constrained.dtype)
            coefficients = constrained[self._params_ma].reshape(
                self.k_endog, self.k_endog * self.k_ma)
            unconstrained_matrices, variance = (
                unconstrain_stationary_multivariate(coefficients, state_cov))
            unconstrained[self._params_ma] = unconstrained_matrices.ravel()
        else:
            unconstrained[self._params_ma] = constrained[self._params_ma]

        # 4. Regression terms: nothing to do
        unconstrained[self._params_regression] = (
            constrained[self._params_regression])

        # 5. State covariance terms
        # If we have variances, then these were forced to be positive
        if self.error_cov_type == 'diagonal':
            unconstrained[self._params_state_cov] = (
                constrained[self._params_state_cov]**0.5)
        # Otherwise, nothing needs to be done
        elif self.error_cov_type == 'unstructured':
            unconstrained[self._params_state_cov] = (
                constrained[self._params_state_cov])

        # 5. Measurement error variance terms
        if self.measurement_error:
            # These were forced to be positive
            unconstrained[self._params_obs_cov] = (
                constrained[self._params_obs_cov]**0.5)

        return unconstrained