Exemple #1
0
    @property
    def mean(self):
        return self.alpha / self.lamb

    @property
    def var(self):
        return self.alpha / self.lamb**2

    def _sample(self):
        raise NotImplementedError


def setup_distribution():
    ugen = RngStream()
    dist = Gamma(alpha=1.5, lamb=6, ugen=ugen)
    return dist


if __name__ == "__main__":

    parser = get_parser()
    args = parser.parse_args()
    num_samples = args.num_samples

    dist = setup_distribution()

    samples = dist.sample(num_samples)
    DensityPlotter(dist=dist).make_plots(samples.flatten())
    test_mean(dist, samples)
        return self._var

    def _sample(self):
        u1, u2 = self.ugen1.RandU01(), self.ugen2.RandU01()
        return self.low + (u1 + u2) * (self.width / 2)


def setup_distribution():
    ugen1 = RngStream()
    ugen2 = RngStream()
    # symm_tri_dist = SymmetricTriangular(ugen1=ugen1, ugen2=ugen2)
    symm_tri_dist = SymmetricTriangular(low=1,
                                        high=10,
                                        ugen1=ugen1,
                                        ugen2=ugen2)
    # symm_tri_dist = Gaussian(mu=10, sigma=1, ugen1=ugen1, ugen2=ugen2)
    return symm_tri_dist


if __name__ == "__main__":

    parser = get_parser()
    args = parser.parse_args()
    num_samples = args.num_samples

    symm_tri_dist = setup_distribution()

    samples = symm_tri_dist.sample(num_samples)
    DensityPlotter(dist=symm_tri_dist).make_plots(samples.flatten())
    test_mean(symm_tri_dist, samples)

class StdNormal(Gaussian):
    def __init__(self, ugen1: RngStream, ugen2: RngStream):
        super().__init__(0, 1, ugen1, ugen2)

    def _sample(self):
        try:
            return self.cache.pop()
        except IndexError:
            self.fill_cache()
            return self.cache.pop()


if __name__ == "__main__":

    parser = get_parser()
    args = parser.parse_args()

    num_samples = args.num_samples

    ugen1 = RngStream()
    ugen2 = RngStream()
    normal_dist = StdNormal(ugen1=ugen1, ugen2=ugen2)
    # normal_dist = Gaussian(mu=10, sigma=1, ugen1=ugen1, ugen2=ugen2)

    samples = normal_dist.sample(num_samples)

    DensityPlotter(dist=normal_dist).make_plots(samples.flatten())
    test_mean(normal_dist, samples)
Exemple #4
0
from distributions.make_plots import DensityPlotter
from distributions.utils import get_parser, test_mean


class Exponential(Distribution):
    def __init__(self, lamb: float, ugen: RngStream):
        self.lamb = lamb
        self.mean = 1 / lamb
        self.var = 1 / lamb**2
        self.ugen = ugen

    def _sample(self):
        u = self.ugen.RandU01()
        return -log(u) / self.lamb


if __name__ == "__main__":

    parser = get_parser()
    args = parser.parse_args()

    num_samples = args.num_samples

    ugen = RngStream()
    exp_dist = Exponential(1, ugen=ugen)

    samples = exp_dist.sample(num_samples)

    DensityPlotter(dist=exp_dist).make_plots(samples.flatten())
    test_mean(exp_dist, samples)
Exemple #5
0
    def sample(self, *shape):
        num_samples = np.prod(shape, dtype=int)
        samples = [self._sample() for _ in range(num_samples)]
        samples = np.reshape(samples, shape)
        return samples


class Uniform01(Uniform):
    def __init__(self, ugen: RngStream):
        super().__init__(0, 1, ugen)

    def _sample(self):
        return self.ugen.RandU01()


if __name__ == "__main__":

    parser = get_parser()
    args = parser.parse_args()

    num_samples = args.num_samples

    ugen = RngStream()
    # unif_dist = Uniform01(ugen=ugen)
    unif_dist = Uniform(100, 500, ugen=ugen)

    samples = unif_dist.sample(num_samples, 100)

    DensityPlotter(dist=unif_dist).make_plots(samples.flatten())
    test_mean(unif_dist, samples)