def mvsdist(data): """Return 'frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array-like (raveled to 1-d) Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data """ x = ravel(data) n = len(x) if (n < 2): raise ValueError, "Need at least 2 data-points." xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C) else: nm1 = n-1 fac = n*C/2. val = nm1/2. mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1)) sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac)) vdist = distributions.invgamma(val,scale=fac) return mdist, vdist, sdist
def mvsdist(data): """Return 'frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array-like (raveled to 1-d) Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data """ x = ravel(data) n = len(x) if (n < 2): raise ValueError("Need at least 2 data-points.") xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C) else: nm1 = n-1 fac = n*C/2. val = nm1/2. mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1)) sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac)) vdist = distributions.invgamma(val,scale=fac) return mdist, vdist, sdist
def mvsdist(data): """'frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array-like Converted to 1-d using ravel. Requires 2 or more data-points Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data Notes ----- The return values from bayes_mvs(data) is equivalent to tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data)) In other words, calling <dist>.mean() and <dist>.interval(0.90) on the three distribution objects returned from this function will give the same results that are returned from bayes_mvs """ x = ravel(data) n = len(x) if (n < 2): raise ValueError("Need at least 2 data-points.") xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C / n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C / (2. * n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0 / n) * C) else: nm1 = n - 1 fac = n * C / 2. val = nm1 / 2. mdist = distributions.t(nm1, loc=xbar, scale=math.sqrt(C / nm1)) sdist = distributions.gengamma(val, -2, scale=math.sqrt(fac)) vdist = distributions.invgamma(val, scale=fac) return mdist, vdist, sdist
def mvsdist(data): """'frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array-like Converted to 1-d using ravel. Requires 2 or more data-points Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data Notes ----- The return values from bayes_mvs(data) is equivalent to tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data)) In other words, calling <dist>.mean() and <dist>.interval(0.90) on the three distribution objects returned from this function will give the same results that are returned from bayes_mvs """ x = ravel(data) n = len(x) if (n < 2): raise ValueError("Need at least 2 data-points.") xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C) else: nm1 = n-1 fac = n*C/2. val = nm1/2. mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1)) sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac)) vdist = distributions.invgamma(val,scale=fac) return mdist, vdist, sdist
def mvsdist(data): """ 'Frozen' distributions for mean, variance, and standard deviation of data. Parameters ---------- data : array_like Input array. Converted to 1-D using ravel. Requires 2 or more data-points. Returns ------- mdist : "frozen" distribution object Distribution object representing the mean of the data vdist : "frozen" distribution object Distribution object representing the variance of the data sdist : "frozen" distribution object Distribution object representing the standard deviation of the data Notes ----- The return values from bayes_mvs(data) is equivalent to ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``. In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)`` on the three distribution objects returned from this function will give the same results that are returned from `bayes_mvs`. Examples -------- >>> from scipy.stats import mvsdist >>> data = [6, 9, 12, 7, 8, 8, 13] >>> mean, var, std = mvsdist(data) We now have frozen distribution objects "mean", "var" and "std" that we can examine: >>> mean.mean() 9.0 >>> mean.interval(0.95) (6.6120585482655692, 11.387941451734431) >>> mean.std() 1.1952286093343936 """ x = ravel(data) n = len(x) if (n < 2): raise ValueError("Need at least 2 data-points.") xbar = x.mean() C = x.var() if (n > 1000): # gaussian approximations for large n mdist = distributions.norm(loc=xbar, scale=math.sqrt(C/n)) sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C/(2.*n))) vdist = distributions.norm(loc=C, scale=math.sqrt(2.0/n)*C) else: nm1 = n-1 fac = n*C/2. val = nm1/2. mdist = distributions.t(nm1,loc=xbar,scale=math.sqrt(C/nm1)) sdist = distributions.gengamma(val,-2,scale=math.sqrt(fac)) vdist = distributions.invgamma(val,scale=fac) return mdist, vdist, sdist
def get_p(sample_mean, population_mean_null, deviation, length, one=True): z = get_z_two_queues(sample_mean, population_mean_null, deviation, length) size = norm(1, 0, 0, z) if (one): return 0.5 - size return (0.5 - size) * 2
def get_z(coefficient): return norm(1, 0, 0, coefficient / 2)