Exemple #1
0
    def load_training_from_dataset(self, dataset, training_set, sample=0.2):
        """Retieves training data from the database based on intersection with an xr Dataset

        Args:
            dataset (xarray.Dataset): Typical Dataset object generated using one of
                the datacube load method (GridWorkflow or Datacube clases)
            training_set (str): Name of the training set identifier to select the right
                training data
            sample (float): Float between 0 and 1. Proportion of intersection geometry to sample.
                Performs random sampling of the geometries

        Return:
            list: A feature collection reprojected to the CRS of the xarray Dataset
        """
        geobox = dataset.geobox
        crs = str(dataset.crs)
        poly = Polygon.from_geobox(geobox)
        query_set = TrainClassification.objects.filter(
            train_object__the_geom__contained=poly,
            training_set=training_set).prefetch_related(
                'train_object', 'interpret_tag')
        if 0 < sample < 1:
            nsample = floor(query_set.count() * sample)
            query_set = query_set.order_by('?')[:nsample]

        fc = (train_object_to_feature(x, crs) for x in query_set)
        return fc
Exemple #2
0
def load_segmentation_from_dataset(geoarray, segmentation_name):
    """Retrieve a segmentation intersecting with a geoarray from the database

    Args:
        geoarray (xarray.Dataset): Typical Dataset object generated using one of
            the datacube load method (GridWorkflow or Datacube clases)
        segmentation_name (str): Unique segmentation identifier

    Return:
        list: A geojson like feature collection. See ``madmex.overlay.conversions.predict_object_to_feature``
        for more details about the structure of each feature.
    """
    # TODO: We'll probably have to introduce a buffer here to account for the curving of reprojected extent
    geobox = geoarray.geobox
    crs = geoarray.crs._crs.ExportToProj4()
    poly = Polygon.from_geobox(geobox)
    query_set = PredictObject.objects.filter(
        the_geom__contained=poly,
        segmentation_information__name=segmentation_name)
    fc = [predict_object_to_feature(x, crs) for x in query_set]
    return fc