Exemple #1
0
def benchmark_eval(args):
    cfg = setup(args)
    model = build_model(cfg)
    model.eval()
    logger.info("Model:\n{}".format(model))
    DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 0
    data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        while True:
            yield from DatasetFromList(dummy_data, copy=False)

    for _ in range(5):  # warmup
        model(dummy_data[0])

    max_iter = 400
    timer = Timer()
    with tqdm.tqdm(total=max_iter) as pbar:
        for idx, d in enumerate(f()):
            if idx == max_iter:
                break
            model(d)
            pbar.update()
    logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))
Exemple #2
0
 def __init__(self, warmup_iter=3):
     """
     Args:
         warmup_iter (int): the number of iterations at the beginning to exclude
             from timing.
     """
     self._warmup_iter = warmup_iter
     self._step_timer = Timer()
Exemple #3
0
def benchmark_data(args):
    cfg = setup(args)

    dataloader = build_detection_train_loader(cfg)

    timer = Timer()
    itr = iter(dataloader)
    for i in range(10):  # warmup
        next(itr)
        if i == 0:
            startup_time = timer.seconds()
    timer = Timer()
    max_iter = 1000
    for _ in tqdm.trange(max_iter):
        next(itr)
    logger.info("{} iters ({} images) in {} seconds.".format(
        max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds()))
    logger.info("Startup time: {} seconds".format(startup_time))
    vram = psutil.virtual_memory()
    logger.info("RAM Usage: {:.2f}/{:.2f} GB".format(
        (vram.total - vram.available) / 1024**3, vram.total / 1024**3))
Exemple #4
0
 def before_train(self):
     self._start_time = time.perf_counter()
     self._total_timer = Timer()
     self._total_timer.pause()
Exemple #5
0
class IterationTimer(HookBase):
    """
    Track the time spent for each iteration (each run_step call in the trainer).
    Print a summary in the end of training.

    This hook uses the time between the call to its :meth:`before_step`
    and :meth:`after_step` methods.
    Under the convention that :meth:`before_step` of all hooks should only
    take negligible amount of time, the :class:`IterationTimer` hook should be
    placed at the beginning of the list of hooks to obtain accurate timing.
    """
    def __init__(self, warmup_iter=3):
        """
        Args:
            warmup_iter (int): the number of iterations at the beginning to exclude
                from timing.
        """
        self._warmup_iter = warmup_iter
        self._step_timer = Timer()

    def before_train(self):
        self._start_time = time.perf_counter()
        self._total_timer = Timer()
        self._total_timer.pause()

    def after_train(self):
        logger = logging.getLogger(__name__)
        total_time = time.perf_counter() - self._start_time
        total_time_minus_hooks = self._total_timer.seconds()
        hook_time = total_time - total_time_minus_hooks

        num_iter = self.trainer.iter + 1 - self.trainer.start_iter - self._warmup_iter

        if num_iter > 0 and total_time_minus_hooks > 0:
            # Speed is meaningful only after warmup
            # NOTE this format is parsed by grep in some scripts
            logger.info(
                "Overall training speed: {} iterations in {} ({:.4f} s / it)".
                format(
                    num_iter,
                    str(datetime.timedelta(
                        seconds=int(total_time_minus_hooks))),
                    total_time_minus_hooks / num_iter,
                ))

        logger.info("Total training time: {} ({} on hooks)".format(
            str(datetime.timedelta(seconds=int(total_time))),
            str(datetime.timedelta(seconds=int(hook_time))),
        ))

    def before_step(self):
        self._step_timer.reset()
        self._total_timer.resume()

    def after_step(self):
        # +1 because we're in after_step
        iter_done = self.trainer.iter - self.trainer.start_iter + 1
        if iter_done >= self._warmup_iter:
            sec = self._step_timer.seconds()
            self.trainer.storage.put_scalars(time=sec)
        else:
            self._start_time = time.perf_counter()
            self._total_timer.reset()

        self._total_timer.pause()
def load_coco_json(json_file,
                   image_root,
                   dataset_name=None,
                   extra_annotation_keys=None):
    """
    Load a json file with COCO's instances annotation format.
    Currently supports instance detection, instance segmentation,
    and person keypoints annotations.

    Args:
        json_file (str): full path to the json file in COCO instances annotation format.
        image_root (str): the directory where the images in this json file exists.
        dataset_name (str): the name of the dataset (e.g., coco_2017_train).
            If provided, this function will also put "thing_classes" into
            the metadata associated with this dataset.
        extra_annotation_keys (list[str]): list of per-annotation keys that should also be
            loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints",
            "category_id", "segmentation"). The values for these keys will be returned as-is.
            For example, the densepose annotations are loaded in this way.

    Returns:
        list[dict]: a list of dicts in dl_lib standard format. (See
        `Using Custom Datasets </tutorials/datasets.html>`_ )

    Notes:
        1. This function does not read the image files.
           The results do not have the "image" field.
    """
    from pycocotools.coco import COCO

    timer = Timer()
    json_file = PathManager.get_local_path(json_file)
    with contextlib.redirect_stdout(io.StringIO()):
        coco_api = COCO(json_file)
    if timer.seconds() > 1:
        logger.info("Loading {} takes {:.2f} seconds.".format(
            json_file, timer.seconds()))

    id_map = None
    if dataset_name is not None:
        meta = MetadataCatalog.get(dataset_name)
        cat_ids = sorted(coco_api.getCatIds())
        cats = coco_api.loadCats(cat_ids)
        # The categories in a custom json file may not be sorted.
        thing_classes = [
            c["name"] for c in sorted(cats, key=lambda x: x["id"])
        ]
        meta.thing_classes = thing_classes

        # In COCO, certain category ids are artificially removed,
        # and by convention they are always ignored.
        # We deal with COCO's id issue and translate
        # the category ids to contiguous ids in [0, 80).

        # It works by looking at the "categories" field in the json, therefore
        # if users' own json also have incontiguous ids, we'll
        # apply this mapping as well but print a warning.
        if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)):
            if "coco" not in dataset_name:
                logger.warning("""
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you.
""")
        id_map = {v: i for i, v in enumerate(cat_ids)}
        meta.thing_dataset_id_to_contiguous_id = id_map

    # sort indices for reproducible results
    img_ids = sorted(list(coco_api.imgs.keys()))
    # imgs is a list of dicts, each looks something like:
    # {'license': 4,
    #  'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
    #  'file_name': 'COCO_val2014_000000001268.jpg',
    #  'height': 427,
    #  'width': 640,
    #  'date_captured': '2013-11-17 05:57:24',
    #  'id': 1268}
    imgs = coco_api.loadImgs(img_ids)

    # anns is a list[list[dict]], where each dict is an annotation
    # record for an object. The inner list enumerates the objects in an image
    # and the outer list enumerates over images. Example of anns[0]:
    # [{'segmentation': [[192.81,
    #     247.09,
    #     ...
    #     219.03,
    #     249.06]],
    #   'area': 1035.749,
    #   'iscrowd': 0,
    #   'image_id': 1268,
    #   'bbox': [192.81, 224.8, 74.73, 33.43],
    #   'category_id': 16,
    #   'id': 42986},
    #  ...]
    anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
    if "minival" not in json_file:
        # The popular valminusminival & minival annotations for COCO2014 contain this bug.
        # However the ratio of buggy annotations there is tiny and does not affect accuracy.
        # Therefore wce explicitly white-list them.
        ann_ids = [
            ann["id"] for anns_per_image in anns for ann in anns_per_image
        ]
        assert len(set(ann_ids)) == len(
            ann_ids), "Annotation ids in '{}' are not unique!".format(
                json_file)

    imgs_anns = list(zip(imgs, anns))

    logger.info("Loaded {} images in COCO format from {}".format(
        len(imgs_anns), json_file))

    dataset_dicts = []

    ann_keys = ["iscrowd", "bbox", "keypoints", "category_id"
                ] + (extra_annotation_keys or [])

    num_instances_without_valid_segmentation = 0

    for (img_dict, anno_dict_list) in imgs_anns:
        record = {}
        record["file_name"] = os.path.join(image_root, img_dict["file_name"])
        record["height"] = img_dict["height"]
        record["width"] = img_dict["width"]
        image_id = record["image_id"] = img_dict["id"]

        objs = []
        for anno in anno_dict_list:
            # Check that the image_id in this annotation is the same as
            # the image_id we're looking at.
            # This fails only when the data parsing logic or the annotation file is buggy.

            # The original COCO valminusminival2014 & minival2014 annotation files
            # actually contains bugs that, together with certain ways of using COCO API,
            # can trigger this assertion.
            assert anno["image_id"] == image_id

            assert anno.get("ignore", 0) == 0

            obj = {key: anno[key] for key in ann_keys if key in anno}

            segm = anno.get("segmentation", None)
            if segm:  # either list[list[float]] or dict(RLE)
                if not isinstance(segm, dict):
                    # filter out invalid polygons (< 3 points)
                    segm = [
                        poly for poly in segm
                        if len(poly) % 2 == 0 and len(poly) >= 6
                    ]
                    if len(segm) == 0:
                        num_instances_without_valid_segmentation += 1
                        continue  # ignore this instance
                obj["segmentation"] = segm

            keypts = anno.get("keypoints", None)
            if keypts:  # list[int]
                for idx, v in enumerate(keypts):
                    if idx % 3 != 2:
                        # COCO's segmentation coordinates are floating points in [0, H or W],
                        # but keypoint coordinates are integers in [0, H-1 or W-1]
                        # Therefore we assume the coordinates are "pixel indices" and
                        # add 0.5 to convert to floating point coordinates.
                        keypts[idx] = v + 0.5
                obj["keypoints"] = keypts

            obj["bbox_mode"] = BoxMode.XYWH_ABS
            if id_map:
                obj["category_id"] = id_map[obj["category_id"]]
            objs.append(obj)
        record["annotations"] = objs
        dataset_dicts.append(record)

    if num_instances_without_valid_segmentation > 0:
        logger.warn(
            "Filtered out {} instances without valid segmentation. "
            "There might be issues in your dataset generation process.".format(
                num_instances_without_valid_segmentation))
    return dataset_dicts