Exemple #1
0
 def __init__(self,
              game_state: GameState,
              parent: 'MCTSNode' = None,
              move: Move = None):
     self.parent = parent
     self.game_state = game_state
     self.move = move
     self.win_counts = {Player.white: 0, Player.black: 0}
     self.num_rollouts = 0
     self.children: List[MCTSNode] = []
     self.univisted_moves = game_state.legal_moves()
Exemple #2
0
 def __init__(self, game_state: GameState, parent: MCTSNode = None, last_move: Move = None):
     self.game_state = game_state
     self.parent = parent
     self.last_move = last_move
     self.win_counts: Dict[Player, int] = {
         Player.black: 0,
         Player.white: 0,
     }
     self.num_rollouts: int = 0
     self.children: List[MCTSNode] = []
     b: Board = game_state.board
     p: Player = game_state.next_player
     moves: List[Move] = game_state.legal_moves()
     self.unvisited_moves: List[Move] = [m for m in moves if not (m.point and is_point_an_eye(b, m.point, p))]
Exemple #3
0
 def select_move(self, game_state: GameState):
     best_moves: List[Move] = []
     best_score = float("-inf")
     # Loop over all legal moves.
     for possible_move in game_state.legal_moves():
         if possible_move.point and is_point_an_eye(game_state.board, possible_move.point, game_state.next_player):
             continue  # skip the eye
         next_state = game_state.apply_move(possible_move)
         result = alphabeta(next_state, False, game_state.next_player, self.max_depth, ev_fn=self.ev_fn)
         if (not best_moves) or result > best_score:
             best_moves = [possible_move]
             best_score = result
         elif result == best_score:
             best_moves.append(possible_move)
     # For variety, randomly select among all equally good moves.
     return random.choice(best_moves)