Exemple #1
0
    def pretraining(self, train_x = None, train_y = None):
            #print len(numpy.shape(train_y))
            
            multi_classes = True if self.cfg.n_outs >= 3 else False
            train_y  = train_y.astype(dtype = theano.config.floatX)
            train_y_T = train_y[numpy.newaxis].T
            
            if multi_classes == False:               
                train_xy = numpy.hstack((train_x, train_y_T))
                shared_train_xy = shared_dataset_X(train_xy) 
            else:
                enc = OneHotEncoder(n_values = self.cfg.n_outs, dtype = theano.config.floatX, sparse=False)
                encode_train_y = enc.fit_transform(train_y_T)
                shared_train_xy = shared_dataset_X(numpy.hstack((train_x, encode_train_y)))              
            log('> ... getting the pre-training functions')
            if train_x is None: # this means we are using the stream input from file
                pass
            else: # this means using numpy matrix as input

                    start_layer_index = 0; start_epoch_index = 0

                    log('> ... pre-training the model')
                    # layer by layer; for each layer, go through the epochs
                    for i in range(start_layer_index, self.cfg.ptr_layer_number):
                        pretraining_fn = self.pretraining_function(self.dA_layers[i], train_set_x = shared_train_xy, batch_size = self.cfg.batch_size)
                        for epoch in range(start_epoch_index, self.cfg.epochs):
                            # go through the training set
                                c = []
#                            while (not self.cfg.train_sets.is_finish()):
#                                self.cfg.train_sets.load_next_partition(self.cfg.train_xy)
                                iteration_per_epoch = train_x.shape[0] / self.cfg.batch_size if train_x.shape[0] / self.cfg.batch_size else 1
                                for batch_index in xrange(iteration_per_epoch):  # loop over mini-batches
                                    c.append(pretraining_fn(index=batch_index,
                                                                corruption=self.cfg.corruption_levels[i],
                                                                lr=self.cfg.learning_rates[i]
                                                                , momentum=self.cfg.momentum
                                                                ))
#                            self.cfg.train_sets.initialize_read()
                                log('> layer %i, epoch %d, reconstruction cost %f' % (i, epoch, numpy.mean(c)))  
                        hidden_values = self.dA_layers[i].transform(shared_train_xy.get_value())
                        if self.cfg.settings.has_key('firstlayer_xy') and self.cfg.settings['firstlayer_xy'] ==  1:
                            shared_train_xy = shared_dataset_X(hidden_values)
                        else: # add y for every layer 
                            if multi_classes == False:               
                                train_xy = numpy.hstack((hidden_values, train_y_T))
                                shared_train_xy = shared_dataset_X(train_xy) 
                            else:
                                shared_train_xy = shared_dataset_X(numpy.hstack((hidden_values, encode_train_y)))   
Exemple #2
0
    def pretraining(self, train_x = None):
            log('> ... getting the pre-training functions')
            if train_x is not None:
                    batch_size = self.cfg.batch_size if train_x.shape[0] > self.cfg.batch_size else train_x.shape[0]
                    pretraining_fns = self.pretraining_functions(train_set_x=shared_dataset_X(train_x), batch_size=batch_size)

                    # resume training
                    start_layer_index = 0; start_epoch_index = 

                    log('> ... pre-training the model')
                    # layer by layer; for each layer, go through the epochs
                    for i in range(start_layer_index, self.cfg.ptr_layer_number):
                        for epoch in range(start_epoch_index, self.cfg.epochs):
                            # go through the training set
                                c = []

                                for batch_index in xrange(train_x.shape[0] / batch_size):  # loop over mini-batches
                                    c.append(pretraining_fns[i](index=batch_index,
                                                                corruption=self.cfg.corruption_levels[i],
                                                                lr=self.cfg.learning_rates[i]
                                                                , momentum=self.cfg.momentum
                                                                ))
                                
                                log('> layer %i, epoch %d, reconstruction cost %f' % (i, epoch, numpy.mean(c)))
Exemple #3
0
    def pretraining_with_estop(self, X_train_minmax, settings):
            batch_size = settings['batch_size']
            corruption_levels = settings['corruption_levels']
            pretrain_lr = settings['pretrain_lr']
            momentum = settings['momentum']
            pretraining_epochs = settings['pretraining_epochs']
            n_visible = X_train_minmax.shape[1]
            # shuffle examples:
            from sklearn.utils import shuffle
            X_train_minmax = shuffle(X_train_minmax, random_state=0)
            
            train_set_x = shared_dataset_X(X_train_minmax[ :X_train_minmax.shape[0] / 2, :], borrow=True)
            valid_set_x = shared_dataset_X(X_train_minmax[ X_train_minmax.shape[0] / 2:, :], borrow=True)
            # compute number of minibatches for training, validation and testing

            n_train_batches = train_set_x.get_value(borrow=True).shape[0]

            if n_train_batches <= batch_size:
                batch_size = n_train_batches
            n_train_batches /= batch_size
            # numpy random generator
            numpy_rng = numpy.random.RandomState(66)
            validation_funcs = self.get_cost_functions(valid_set_x)
            pretraining_fns = self.pretraining_functions(train_set_x, batch_size)
            # early-stopping parameters

            # patience = 1000 * n_train_batches 
            patience_increase = 2.  # wait this much longer when a new best is
                                    # found
            improvement_threshold = 0.995  # a relative improvement of this much is
                                           # considered significant
            validation_frequency = min(n_train_batches * pretraining_epochs / 200, 100)
                                          # go through this many
                                          # minibatche before checking the network
                                          # on the validation set; in this case we
                                          # check every epoch
            print '... pre-training the model'
            start_time = time.clock()
            # Pre-train layer-wise
            for i in xrange(self.n_layers):
                # go through pretraining epochs
                best_params = None
                best_validation_loss = numpy.inf
                test_score = 0.
                done_looping = False
                epoch = 0
                best_iter = 0
                patience = 5000  # look as this many iterations
                while epoch < pretraining_epochs and (not done_looping):
                    # go through the training set
                    c = []
                    for minibatch_index in xrange(n_train_batches):
                        c.append(pretraining_fns[i](index=minibatch_index,
                                 corruption=corruption_levels[i],
                                 lr=pretrain_lr, momentum = momentum))
                        iter = epoch * n_train_batches + minibatch_index +1
                        if (iter + 1) % validation_frequency == 0:
                                
                                this_validation_fn = validation_funcs[i]
                                this_validation_loss = this_validation_fn()
                                print('epoch %i, minibatch %i/%i, validation cost %f ' % 
                                      (epoch, minibatch_index + 1, n_train_batches,
                                       this_validation_loss))

                                # if we got the best validation score until now
                                if this_validation_loss < best_validation_loss:

                                    # improve patience if loss improvement is good enough
                                    if (this_validation_loss < best_validation_loss * 
                                        improvement_threshold):
                                        patience = max(patience, iter * patience_increase)

                                    # save best validation score and iteration number
                                        best_validation_loss = this_validation_loss
                                        best_iter = iter
                        if patience <= iter:
                                done_looping = True
                                break    
                    print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
                    print numpy.mean(c)
                    epoch += 1
            end_time = time.clock()

            print >> sys.stderr, ('The pretraining code ran for %.2fm' % ((end_time - start_time) / 60.))