Exemple #1
0
#The number of walkers

nWalkersmin = 500
nWalkersmax = 2000

walkers = np.array([i + 1 for i in range(nWalkersmin, nWalkersmax)])

correctwalkers = walkers[walkers % 50 == 0]
vavg = np.zeros(correctwalkers.size)
stdvavg = np.zeros(correctwalkers.size)

count = 0

for i in range(correctwalkers.size):
    thiswalker = correctwalkers[i]
    H2Wfn = dmc.wavefunction(thiswalker, 'harmonic', plotting=False)

    TheoreticalOmega0 = H2Wfn.getTheoreticalOmega0()

    print('the theoretical frequency for H2 vibration is: ' +
          str(TheoreticalOmega0) + ' cm^-1')

    #Important parameters for the MC simulation
    nReps = 10  #Repeat the DMC simulation 3 times
    nEquilibrationSteps = 10  #Initially equilibrate the simulation with 12000 diffusion steps
    nSteps = 200  #Make 2000 Diffusion steps in each simulation

    #don't worry about this just yet
    nDesSteps = 75
    nRepsDW = 2000
Exemple #2
0
import dmc1D as dmc
import numpy as np
import matplotlib.pyplot as plt
import sys

#test of Morse

#Conversion factor of atomic units of energy to wavenumber (inverse centimeters)
au2wn=219474.63


#The number of walkers
nWalkers=10000
H2Wfn=dmc.wavefunction(nWalkers,'Morse',plotting=False)
TheoreticalOmega0=H2Wfn.getTheoreticalOmega0()
print('the theoretical frequency for H2 vibration is: '+str(TheoreticalOmega0)+' cm^-1')


#Important parameters for the MC simulation
nReps=3  #Repeat the DMC simulation 3 times
nEquilibrationSteps=1200 #Initially equilibrate the simulation with 12000 diffusion steps 
nSteps=2000  #Make 2000 Diffusion steps in each simulation


#don't worry about this just yet
nDesSteps=75  
nRepsDW=2000


print('important parameters:')
print('Equilibrating for '+str(nEquilibrationSteps))
Exemple #3
0
import dmc1D as dmc
import numpy as np
import matplotlib.pyplot as plt
import sys

#test of quartic

#Conversion factor of atomic units of energy to wavenumber (inverse centimeters)
au2wn = 219474.63

#The number of walkers
nWalkers = 10000  #was10000
H2Wfn = dmc.wavefunction(nWalkers, 'Quartic', plotting=False)
TheoreticalOmega0 = H2Wfn.getTheoreticalOmega0()
print('the theoretical frequency for H2 vibration is: ' +
      str(TheoreticalOmega0) + ' cm^-1')

#Important parameters for the MC simulation
nReps = 3  #Repeat the DMC simulation 3 times
nEquilibrationSteps = 12000  #Initially equilibrate the simulation with 12000 diffusion steps
nSteps = 2000  #Make 2000 Diffusion steps in each simulation

#don't worry about this just yet
nDesSteps = 75
nRepsDW = 2000

print('Important parameters:')
print('Equilibrating for ' + str(nEquilibrationSteps))
print('The number of diffusion steps in the simulation is ' + str(nSteps))
print('The time step is ' + str(H2Wfn.dtau))
import dmc1D as dmc
import numpy as np
import matplotlib.pyplot as plt
import sys

#Conversion factor of atomic units of energy to wavenumber (inverse centimeters)
au2wn = 219474.63

#The number of walkers
nWalkers = 10000
H2Wfn = dmc.wavefunction(nWalkers, 'harmonic', plotting=False)
TheoreticalOmega0 = H2Wfn.getTheoreticalOmega0()
print('the theoretical frequency for H2 vibration is: ' +
      str(TheoreticalOmega0) + ' cm^-1')

#Important parameters for the MC simulation
nReps = 3  #Repeat the DMC simulation 3 times
nEquilibrationSteps = 1200  #Initially equilibrate the simulation with 12000 diffusion steps
nSteps = 2000  #Make 2000 Diffusion steps in each simulation

#don't worry about this just yet
nDesSteps = 75
nRepsDW = 2000

print('important parameters:')
print('Equilibrating for ' + str(nEquilibrationSteps))
print('The number of diffusion steps in the simulation is ' + str(nSteps))
print('The time step is ' + str(H2Wfn.dtau))

H2Wfn.setX(H2Wfn.xcoords + 6.2)