Exemple #1
0
    def test_run_total_column_water_vapour(self):
        self.dataset = xr.Dataset()

        data = DefaultData.create_default_array_3d(3,
                                                   3,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        data[0, :, :] = 11.52932
        data[1, :, :] = 11.529235
        data[2, :, :] = 11.52744
        self.dataset["amsre.nwp.log_surface_pressure"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        data = DefaultData.create_default_array_4d(3,
                                                   3,
                                                   60,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        data[0, :, 1, 1] = np.float32(
            np.array([
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                1.3609621E-8, 3.7061102E-7, 4.273528E-6, 2.6397798E-5,
                3.5652188E-6, 1.5417224E-4, 1.9648654E-4, 9.139678E-5,
                8.232285E-6, 6.5089694E-7, 4.0974975E-9, 0.0
            ]))
        data[1, :, 1, 1] = np.float32(
            np.array([
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 1.0075588E-7, 1.054102E-6, 1.1424428E-5, 2.2602183E-6,
                1.546818E-4, 1.9482679E-4, 8.667531E-5, 4.7594845E-6,
                2.708914E-9, 0.0, 0.0
            ]))
        data[2, :, 1, 1] = np.float32(
            np.array([
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                2.7519864E-9, 4.7594305E-8, 1.3165399E-6, 1.2988783E-4,
                8.855922E-6, 3.5680281E-7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
            ]))
        self.dataset["amsre.nwp.cloud_liquid_water"] = Variable(
            ["matchup_count", "cloud_layers", "ny", "nx"], data)

        prep_data = self.preprocessor.run(self.dataset)
        variable = prep_data.variables["amsre.nwp.total_column_liquid_water"]
        self.assertEqual((11, ), variable.shape)
        self.assertAlmostEqual(0.064784802, variable.data[0], 8)
        self.assertAlmostEqual(0.059696566, variable.data[1], 8)
        self.assertAlmostEqual(0.028990015, variable.data[2], 8)
    def test_run(self):
        dataset = xr.Dataset()

        for i in range(0, len(self.BT_VARIABLE_NAMES)):
            data = DefaultData.create_default_vector(13,
                                                     np.float32,
                                                     fill_value=26)
            dataset[self.BT_VARIABLE_NAMES[i]] = Variable(["matchup"], data)

        bt_bias_correction = BtBiasCorrection()
        bt_bias_correction.run(dataset)

        self.assertAlmostEqual(
            26.3524, dataset["amsre.brightness_temperature6V"].data[0], 6)
        self.assertAlmostEqual(
            26.0793, dataset["amsre.brightness_temperature6H"].data[1], 6)
        self.assertAlmostEqual(
            25.8907, dataset["amsre.brightness_temperature10V"].data[2], 5)
        self.assertAlmostEqual(
            25.2479, dataset["amsre.brightness_temperature10H"].data[3], 6)
        self.assertAlmostEqual(
            26.6228, dataset["amsre.brightness_temperature18V"].data[4], 5)
        self.assertAlmostEqual(
            26.2794, dataset["amsre.brightness_temperature18H"].data[5], 6)
        self.assertAlmostEqual(
            26.02, dataset["amsre.brightness_temperature23V"].data[6], 5)
        self.assertAlmostEqual(
            25.7331, dataset["amsre.brightness_temperature23H"].data[7], 5)
        self.assertAlmostEqual(
            25.646, dataset["amsre.brightness_temperature36V"].data[8], 6)
        self.assertAlmostEqual(
            26.1464, dataset["amsre.brightness_temperature36H"].data[9], 5)
Exemple #3
0
    def test_run_average_variables_masks_invalid(self):
        fill_value = -79

        data = DefaultData.create_default_array_3d(9, 9, 4, np.float32)
        data[0, 2, :] = 104
        data[0, 3, :] = 105
        data[0, 4, :] = 106
        data[0, 5, :] = 107
        data[0, 6, :] = 108

        data[0, 3, 4] = fill_value
        data[0, 4, 6] = fill_value
        variable = Variable(["matchup_count", "ny", "nx"], data)
        variable.attrs["_FillValue"] = fill_value
        self.dataset["amsre.brightness_temperature6H"] = variable

        flag_coding = FlagCoding(4)

        prep_data = self.preprocessor.run(self.dataset,
                                          flag_coding=flag_coding)

        variable = prep_data.variables["amsre.brightness_temperature6H"]
        self.assertEqual((4, ), variable.shape)
        self.assertAlmostEqual(106.0, variable.data[0], 5)

        flags = flag_coding.get_flags()
        self.assertEqual(0, flags[0])
 def test_create_default_array(self):
     array = DefaultData.create_default_array(5,
                                              4,
                                              np.float32,
                                              fill_value=np.NaN)
     self.assertEqual((4, 5), array.shape)
     self.assertTrue(np.isnan(array.data[0, 1]))
Exemple #5
0
    def test_run_stddev_variables_too_many_fill_values(self):
        data = DefaultData.create_default_array_3d(21, 21, 5, np.float32)
        for x in range(0, 21):
            for y in range(0, 21):
                data[:, y, x] = x + y

        data[1, :, 1] = -81
        data[1, :, 2] = -81
        data[1, :, 5] = -81
        variable = Variable(["matchup_count", "ny", "nx"], data)
        variable.attrs["_FillValue"] = -81
        self.dataset["amsre.brightness_temperature36V"] = variable

        flag_coding = FlagCoding(5)

        prep_data = self.preprocessor.run(self.dataset,
                                          flag_coding=flag_coding)
        variable = prep_data.variables[
            "amsre.brightness_temperature36V_stddev"]

        self.assertEqual((5, ), variable.shape)
        self.assertAlmostEqual(8.563489, variable.data[0], 7)
        self.assertAlmostEqual(-81, variable.data[1], 7)
        self.assertAlmostEqual(8.563489, variable.data[2], 7)

        flags = flag_coding.get_flags()
        self.assertEqual(1, flags[1])
Exemple #6
0
    def test_run_stddev_variables_masks_fill_value(self):
        data = DefaultData.create_default_array_3d(21, 21, 5, np.float32)
        for x in range(0, 21):
            for y in range(0, 21):
                data[:, y, x] = (x + y) * 1.0

        data[:, 1, 1] = -80
        data[:, 10, 10] = -80
        data[:, 15, 15] = -80
        data[:, 20, 20] = -80
        variable = Variable(["matchup_count", "ny", "nx"], data)
        variable.attrs["_FillValue"] = -80
        self.dataset["amsre.brightness_temperature23H"] = variable

        flag_coding = FlagCoding(5)

        prep_data = self.preprocessor.run(self.dataset,
                                          flag_coding=flag_coding)
        variable = prep_data.variables[
            "amsre.brightness_temperature23H_stddev"]

        self.assertEqual((5, ), variable.shape)
        self.assertAlmostEqual(8.4922457, variable.data[1], 7)

        flags = flag_coding.get_flags()
        self.assertEqual(0, flags[1])
 def _create_vector_float32_variable(num_matchups):
     array = DefaultData.create_default_vector(num_matchups,
                                               np.float32,
                                               fill_value=np.NaN)
     variable = Variable(["matchup"], array)
     variable.attrs["_FillValue"] = np.NaN
     return variable
Exemple #8
0
    def setUp(self):
        self.preprocessor = Preprocessor()

        self.dataset = xr.Dataset()
        data = DefaultData.create_default_array_3d(5, 5, 11, np.int8)
        self.dataset["amsre.nwp.log_surface_pressure"] = Variable(
            ["macwenameifdifferentlyhere", "ny_test", "nx_test"], data)
        data = DefaultData.create_default_array_4d(5,
                                                   5,
                                                   60,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        self.dataset["amsre.nwp.cloud_liquid_water"] = Variable([
            "macwenameifdifferentlyhere", "cloud_layers", "ny_test", "nx_test"
        ], data)
Exemple #9
0
    def test_run_windspeed_and_relative_angle(self):
        data = DefaultData.create_default_array_3d(3,
                                                   3,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        data[0, :, :] = 2
        data[1, :, :] = 3
        data[2, :, :] = 4
        self.dataset["amsre.nwp.10m_east_wind_component"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        data = DefaultData.create_default_array_3d(3,
                                                   3,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        data[0, :, :] = 5
        data[1, :, :] = 6
        data[2, :, :] = 7
        self.dataset["amsre.nwp.10m_north_wind_component"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        data = DefaultData.create_default_array_3d(3,
                                                   3,
                                                   11,
                                                   np.float32,
                                                   fill_value=np.NaN)
        data[0, :, :] = 8
        data[1, :, :] = 9
        data[2, :, :] = 10
        self.dataset["amsre.satellite_azimuth_angle"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        prep_data = self.preprocessor.run(self.dataset)

        variable = prep_data.variables["amsre.nwp.abs_wind_speed"]
        self.assertEqual((11, ), variable.shape)
        self.assertAlmostEqual(5.3851647, variable.data[0], 7)
        self.assertAlmostEqual(6.7082038, variable.data[1], 7)
        self.assertAlmostEqual(8.0622578, variable.data[2], 7)

        variable = prep_data.variables["relative_angle"]
        self.assertEqual((11, ), variable.shape)
        self.assertAlmostEqual(346.19858, variable.data[0], 5)
        self.assertAlmostEqual(342.43494, variable.data[1], 5)
        self.assertAlmostEqual(340.25513, variable.data[2], 5)
Exemple #10
0
    def test_scale_data_no_scaling(self):
        array = DefaultData.create_default_array(6, 12, np.int16)
        array[0, 0] = 22
        array[1, 0] = 23
        variable = Variable(["y", "x"], array)

        MmdReader._scale_data(variable)

        self.assertEqual(22, variable.data[0, 0])
        self.assertEqual(23, variable.data[1, 0])
Exemple #11
0
 def test_get_default_fill_value(self):
     self.assertEqual(-127, DefaultData.get_default_fill_value(np.int8))
     self.assertEqual(255, DefaultData.get_default_fill_value(np.uint8))
     self.assertEqual(-32767, DefaultData.get_default_fill_value(np.int16))
     self.assertEqual(np.uint16(-1),
                      DefaultData.get_default_fill_value(np.uint16))
     self.assertEqual(-2147483647,
                      DefaultData.get_default_fill_value(np.int32))
     self.assertEqual(4294967295,
                      DefaultData.get_default_fill_value(np.uint32))
     self.assertEqual(-9223372036854775806,
                      DefaultData.get_default_fill_value(np.int64))
     self.assertEqual(np.float32(9.96921E36),
                      DefaultData.get_default_fill_value(np.float32))
     self.assertEqual(9.969209968386869E36,
                      DefaultData.get_default_fill_value(np.float64))
Exemple #12
0
    def test_run_dimension_squeezed_variables(self):
        data = DefaultData.create_default_array_3d(1, 1, 7, np.int32)
        data[3, 0, 0] = 78
        self.dataset["insitu.time"] = Variable(["matchup_count", "ny", "nx"],
                                               data)

        data = DefaultData.create_default_array_3d(1, 1, 7, np.float32)
        data[4, 0, 0] = 0.89
        self.dataset["insitu.lon"] = Variable(["matchup_count", "ny", "nx"],
                                              data)

        prep_data = self.preprocessor.run(self.dataset)

        variable = prep_data.variables["insitu.time"]
        self.assertEqual((7, ), variable.shape)
        self.assertEqual(78, variable.data[3])

        variable = prep_data.variables["insitu.lon"]
        self.assertEqual((7, ), variable.shape)
        self.assertAlmostEqual(0.89, variable.data[4], 7)
Exemple #13
0
    def test_scale_data_only_offset(self):
        array = DefaultData.create_default_array(6, 10, np.int16)
        array[4, 0] = 22
        array[5, 0] = 23
        variable = Variable(["y", "x"], array)
        variable.attrs["OFFSET"] = -10

        MmdReader._scale_data(variable)

        self.assertAlmostEqual(12, variable.data[4, 0], 8)
        self.assertAlmostEqual(13, variable.data[5, 0], 8)
Exemple #14
0
    def test_run_fetch_center_pixel_convert_to_Celsius_and_apply_bias(self):
        data = DefaultData.create_default_array_3d(5, 5, 11, np.float32)
        data[5, 2, 2] = 279.6853
        self.dataset["amsre.nwp.sea_surface_temperature"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        prep_data = self.preprocessor.run(self.dataset)

        variable = prep_data.variables["amsre.nwp.sea_surface_temperature"]
        self.assertEqual((11, ), variable.shape)
        self.assertAlmostEqual(6.4853086, variable.data[5], 7)
Exemple #15
0
    def test_scale_data_only_scaling(self):
        array = DefaultData.create_default_array(6, 11, np.int16)
        array[2, 0] = 22
        array[3, 0] = 23
        variable = Variable(["y", "x"], array)
        variable.attrs["SCALE_FACTOR"] = 0.2

        MmdReader._scale_data(variable)

        self.assertAlmostEqual(4.4, variable.data[2, 0], 8)
        self.assertAlmostEqual(4.6, variable.data[3, 0], 8)
Exemple #16
0
    def test_run_fetch_center_pixel_variables(self):
        data = DefaultData.create_default_array_3d(5, 5, 11, np.int16)
        data[5, 2, 2] = 101
        self.dataset["amsre.pixel_data_quality6V"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        data = DefaultData.create_default_array_3d(5, 5, 11, np.float64)
        data[6, 2, 2] = 1.02
        self.dataset["amsre.nwp.total_column_water_vapour"] = Variable(
            ["matchup_count", "ny", "nx"], data)

        prep_data = self.preprocessor.run(self.dataset)

        variable = prep_data.variables["amsre.pixel_data_quality6V"]
        self.assertEqual((11, ), variable.shape)
        self.assertEqual(101, variable.data[5])

        variable = prep_data.variables["amsre.nwp.total_column_water_vapour"]
        self.assertEqual((11, ), variable.shape)
        self.assertAlmostEqual(1.02, variable.data[6], 8)
Exemple #17
0
    def test_scale_data_scaling_and_offset(self):
        array = DefaultData.create_default_array(6, 9, np.int16)
        array[0, 1] = 22
        array[1, 1] = 23
        variable = Variable(["y", "x"], array)
        variable.attrs["SCALE_FACTOR"] = 0.2
        variable.attrs["OFFSET"] = 1.6

        MmdReader._scale_data(variable)

        self.assertAlmostEqual(6.0, variable.data[0, 1], 8)
        self.assertAlmostEqual(6.2, variable.data[1, 1], 8)
Exemple #18
0
    def calculate_pressure_levels(self, sea_level_pressure):
        num_levels = len(self.A_COEFFS) - 1
        num_measures = len(sea_level_pressure)

        target_data = DefaultData.create_default_array(num_levels,
                                                       num_measures,
                                                       np.float32,
                                                       fill_value=np.NaN)
        for i in range(0, num_measures):
            p_f = np.float64(
                sea_level_pressure[i]) * self.B_COEFFS + self.A_COEFFS
            target_data[i, :] = p_f[1:61] - p_f[0:60]
        return target_data
    def _create_2d_float_variable(max_iterations,
                                  num_matchups,
                                  dims_names=None):
        array = DefaultData.create_default_array(max_iterations,
                                                 num_matchups,
                                                 np.float32,
                                                 dims_names=dims_names,
                                                 fill_value=np.NaN)
        if dims_names is None:
            variable = Variable(["matchup", "iterations"], array)
        else:
            variable = Variable(dims_names, array)

        variable.attrs["_FillValue"] = np.NaN
        return variable
Exemple #20
0
    def test_create_T_A(self):
        dataset = xr.Dataset()

        for i in range(0, len(self.BT_VARIABLE_NAMES)):
            data = DefaultData.create_default_vector(13,
                                                     np.float32,
                                                     fill_value=i * 10)
            dataset[self.BT_VARIABLE_NAMES[i]] = Variable(["matchup_count"],
                                                          data)

        T_A = self.retrieval.create_T_A(dataset)
        self.assertAlmostEqual(0, T_A[0, 0], 8)
        self.assertAlmostEqual(10, T_A[0, 1], 8)
        self.assertAlmostEqual(20, T_A[0, 2], 8)
        self.assertAlmostEqual(30, T_A[0, 3], 8)
        self.assertAlmostEqual(90, T_A[0, 9], 8)
Exemple #21
0
    def test_run_stddev_variables(self):
        data = DefaultData.create_default_array_3d(21, 21, 5, np.float32)
        for x in range(0, 21):
            for y in range(0, 21):
                data[:, y, x] = (x + y) * 0.23

        variable = Variable(["matchup_count", "ny", "nx"], data)
        variable.attrs["_FillValue"] = -79
        self.dataset["amsre.brightness_temperature23V"] = variable

        flag_coding = FlagCoding(5)

        prep_data = self.preprocessor.run(self.dataset,
                                          flag_coding=flag_coding)
        variable = prep_data.variables[
            "amsre.brightness_temperature23V_stddev"]

        self.assertEqual((5, ), variable.shape)
        self.assertAlmostEqual(1.9696023, variable.data[0], 7)

        flags = flag_coding.get_flags()
        self.assertEqual(0, flags[0])
Exemple #22
0
    def test_run_average_variables(self):
        data = DefaultData.create_default_array_3d(7, 7, 5, np.float32)
        data[0, 1, :] = 102
        data[0, 2, :] = 101
        data[0, 3, :] = 103
        data[0, 4, :] = 105
        data[0, 5, :] = 104
        variable = Variable(["matchup_count", "ny", "nx"], data)
        variable.attrs["_FillValue"] = -78
        self.dataset["amsre.brightness_temperature6V"] = variable

        flag_coding = FlagCoding(5)

        prep_data = self.preprocessor.run(self.dataset,
                                          flag_coding=flag_coding)

        variable = prep_data.variables["amsre.brightness_temperature6V"]
        self.assertEqual((5, ), variable.shape)
        self.assertEqual(103, variable.data[0])

        flags = flag_coding.get_flags()
        self.assertEqual(0, flags[0])
Exemple #23
0
    def _add_fill_value_attributes(variable, target_variable_name):
        if "brightness_temperature" in target_variable_name:
            offset = variable.attrs["OFFSET"]
            scale_factor = variable.attrs["SCALE_FACTOR"]
            variable.attrs["_FillValue"] = -32768.0 * scale_factor + offset
            return

        if "insitu." in target_variable_name:
            variable.attrs["_FillValue"] = -32768
            return

        if "source" in variable.attrs:
            variable.attrs["_FillValue"] = 2e20
            return

        if not "FillValue" in variable.attrs:
            default_fill = DefaultData.get_default_fill_value(variable.dtype)
            scale_factor, offset = MmdReader.get_scale_and_offset(variable)
            if scale_factor != 1.0 or offset != 0.0:
                variable.attrs["_FillValue"] = default_fill * scale_factor + offset
            else:
                variable.attrs["_FillValue"] = default_fill
            return
Exemple #24
0
 def _create_variable(self, data_type):
     array = DefaultData.create_default_array(2, 2, data_type)
     variable = Variable(["y", "x"], array)
     return variable
Exemple #25
0
 def _create_dataset_with_variable(self, variable_name):
     dataset = xr.Dataset()
     array = DefaultData.create_default_array(2, 2, np.int16)
     variable = Variable(["y", "x"], array)
     dataset[variable_name] = variable
     return dataset
Exemple #26
0
 def test_add_fill_value_attributes_no_scaling_no_fill_value_float32(self):
     variable = self._create_variable(np.float32)
     MmdReader._add_fill_value_attributes(variable, "don't care")
     self.assertEqual(DefaultData.get_default_fill_value(np.float32),
                      variable.attrs["_FillValue"])
 def _create_vector_uint8_variable(num_matchups):
     array = DefaultData.create_default_vector(num_matchups, np.uint8)
     variable = Variable(["matchup"], array)
     variable.attrs["_FillValue"] = DefaultData.get_default_fill_value(
         np.uint8)
     return variable