Exemple #1
0
def test_rnn_no_memory_pass():
    T.manual_seed(1111)

    input_size = 100
    hidden_size = 100
    rnn_type = 'gru'
    num_layers = 3
    num_hidden_layers = 5
    dropout = 0.2
    nr_cells = 5000
    cell_size = 17
    sparse_reads = 3
    gpu_id = -1
    debug = True
    lr = 0.001
    sequence_max_length = 10
    batch_size = 10
    cuda = gpu_id
    clip = 20
    length = 13

    rnn = SAM(input_size=input_size,
              hidden_size=hidden_size,
              rnn_type=rnn_type,
              num_layers=num_layers,
              num_hidden_layers=num_hidden_layers,
              dropout=dropout,
              nr_cells=nr_cells,
              cell_size=cell_size,
              sparse_reads=sparse_reads,
              gpu_id=gpu_id,
              debug=debug)

    optimizer = optim.Adam(rnn.parameters(), lr=lr)
    optimizer.zero_grad()

    input_data, target_output = generate_data(batch_size, length, input_size,
                                              cuda)
    target_output = target_output.transpose(0, 1).contiguous()

    (chx, mhx, rv) = (None, None, None)
    outputs = []
    for x in range(6):
        output, (chx, mhx, rv), v = rnn(input_data, (chx, mhx, rv),
                                        pass_through_memory=False)
        output = output.transpose(0, 1)
        outputs.append(output)

    output = functools.reduce(lambda x, y: x + y, outputs)
    loss = criterion((output), target_output)
    loss.backward()

    T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
    optimizer.step()

    assert target_output.size() == T.Size([27, 10, 100])
    assert chx[0].size() == T.Size([num_hidden_layers, 10, 100])
    # assert mhx['memory'].size() == T.Size([10,12,17])
    assert rv == None
Exemple #2
0
def test_rnn_n():
  T.manual_seed(1111)

  input_size = 100
  hidden_size = 100
  rnn_type = 'lstm'
  num_layers = 3
  num_hidden_layers = 5
  dropout = 0.2
  nr_cells = 200
  cell_size = 17
  read_heads = 2
  sparse_reads = 4
  gpu_id = -1
  debug = True
  lr = 0.001
  sequence_max_length = 10
  batch_size = 10
  cuda = gpu_id
  clip = 20
  length = 13

  rnn = SAM(
      input_size=input_size,
      hidden_size=hidden_size,
      rnn_type=rnn_type,
      num_layers=num_layers,
      num_hidden_layers=num_hidden_layers,
      dropout=dropout,
      nr_cells=nr_cells,
      cell_size=cell_size,
      read_heads=read_heads,
      sparse_reads=sparse_reads,
      gpu_id=gpu_id,
      debug=debug
  )

  optimizer = optim.Adam(rnn.parameters(), lr=lr)
  optimizer.zero_grad()

  input_data, target_output = generate_data(batch_size, length, input_size, cuda)
  target_output = target_output.transpose(0, 1).contiguous()

  output, (chx, mhx, rv), v = rnn(input_data, None)
  output = output.transpose(0, 1)

  loss = criterion((output), target_output)
  loss.backward()

  T.nn.utils.clip_grad_norm_(rnn.parameters(), clip)
  optimizer.step()

  assert target_output.size() == T.Size([27, 10, 100])
  assert chx[0][0].size() == T.Size([num_hidden_layers,10,100])
  # assert mhx['memory'].size() == T.Size([10,12,17])
  assert rv.size() == T.Size([10, 34])