def evaluate_mlp_ner(): cws = DNN('mlp', mode=TrainMode.Sentence, is_seg=True, task='ner') model = 'tmp/mlp/mlp-ner-model1.ckpt' # print(cws.seg('在中国致公党第十一次全国代表大会隆重召开之际,中国共产党中央委员会谨向大会表示热烈的祝贺,向致公党的同志们', model,ner=True)) print(cws.seg('多饮多尿多食', model, ner=True)) print(cws.seg('无明显小便泡沫增多,伴有夜尿3次。', model, ner=True)) print(cws.seg('无明显双脚疼痛,无间歇性后跛行,无明显足部红肿破溃', model, ner=True, debug=False))
def evaluate_mlp(): cws = DNN('mlp', mode=TrainMode.Sentence) model = 'tmp/mlp-model20.ckpt' # print(cws.seg('小明来自南京师范大学', model, debug=True)) # print(cws.seg('小明是上海理工大学的学生', model)) # print(cws.seg('迈向充满希望的新世纪', model)) # print(cws.seg('我爱北京天安门', model)) # print(cws.seg('在中国致公党第十一次全国代表大会隆重召开之际,中国共产党中央委员会谨向大会表示热烈的祝贺,向致公党的同志们',model)) print(cws.seg('多饮多尿多食', model)) print(cws.seg('无明显小便泡沫增多,伴有夜尿3次。', model)) print(cws.seg('无明显小便泡沫增多,伴有夜尿3次。', model, ner=True)) print(cws.seg('无明显双脚疼痛,无间歇性后跛行,无明显足部红肿破溃', model))
def get_ner(content, model_name): if model_name.startswith('tmp/mlp'): dnn = DNN('mlp', mode=TrainMode.Sentence, task='ner', is_seg=True) else: dnn = DNN('lstm', task='ner', is_seg=True) ner = dnn.seg(content, model_path=model_name, ner=True, trans=True) return ner[1]
def evaluate_lstm(): cws = DNN('lstm', is_seg=True) model = 'tmp/lstm-model100.ckpt' print(cws.seg('小明来自南京师范大学', model, debug=True)) print(cws.seg('小明是上海理工大学的学生', model)) print(cws.seg('迈向充满希望的新世纪', model)) print(cws.seg('我爱北京天安门', model)) print(cws.seg('多饮多尿多食', model)) print(cws.seg('无明显小便泡沫增多,伴有夜尿3次。无明显双脚疼痛,无间歇性后跛行,无明显足部红肿破溃', model))
def get_cws(content, model_name): dnn = DNN('mlp', mode=TrainMode.Sentence, task='ner') ner = dnn.seg(content, model_path=model_name, ner=True, trans=True)[1] return ner