def L_model_backward(AL, Y, caches):
    """
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
    
    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
    
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ... 
    """
    grads = {}
    L = len(caches)  # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)  # after this line, Y is the same shape as AL

    # Initializing the backpropagation
    ### START CODE HERE ### (1 line of code)
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    ### END CODE HERE ###

    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    ### START CODE HERE ### (approx. 2 lines)
    current_cache = caches[-1]
    grads["dA" +
          str(L)], grads["dW" +
                         str(L)], grads["db" + str(L)] = linear_backward(
                             sigmoid_backward(dAL, current_cache[1]),
                             current_cache[0])
    ### END CODE HERE ###

    for l in reversed(range(L - 1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
        ### START CODE HERE ### (approx. 5 lines)
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_backward(
            sigmoid_backward(dAL, current_cache[1]), current_cache[0])
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        ### END CODE HERE ###

    return grads
Exemple #2
0
def linear_activation_backward(dA, cache, activation="relu"):
    """
    实现【LINEAR -> ACTIVATION】线性+激活部分反向计算。
    :param dA: 当前层l的激活后的梯度值
    :param cache: 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
    :param activation: 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    :return:
        dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
        dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
        db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    """

    # linear_activation_forward()的返回值为:
    # cache = (linear_cache, activation_cache)
    # linear_cache(上层的A, 本层的W, 本层的b)
    # activation_cache(本层的Z)
    linear_cache, activation_cache = cache

    # 当激活函数选择ReLU时
    if activation == "relu":

        # 使用函数relu_backward()计算反向传播dZ(外套,激活函数求导)
        dZ = relu_backward(dA, activation_cache)
        # 使用函数linear_backward()计算反向传播dA^[l-1]、dW^[l]、db^[l](内含,线性部分求导)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    # 当激活函数选择Sigmoid时
    elif activation == "sigmoid":

        # 使用函数sigmoid_backward()计算激活函数反向传播dZ(外套,激活函数求导)
        dZ = sigmoid_backward(dA, activation_cache)
        # 使用函数linear_backward()计算线性部分反向传播dA^[l-1]、dW^[l]、db^[l](内含,线性部分求导)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
    def __linear_activation_backward(self, dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.

        Arguments:
        dA -- post-activation gradient for current layer l
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache[0], cache[1]

        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
        else:
            raise Exception("No such activation method: {}.".format(activation))
        dA_prev, dW, db = self.__linear_backward(dZ, linear_cache)

        return dA_prev, dW, db
Exemple #4
0
def linear_activation_backward(dA, cachee, activation):
    if activation == "relu":
        dZ = relu_backward(dA, cachee[1])
    else:
        dZ = sigmoid_backward(dA, cachee[1])
    dA_prev, dW, db = linear_backward(dZ, cachee[0])
    return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.
    
    Arguments:
    dA -- post-activation gradient for current layer l 
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    linear_cache, activation_cache = cache
    Z = activation_cache
    A_prev, W, b = linear_cache

    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###

    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        ### END CODE HERE ###

    return dA_prev, dW, db
def l_model_backward(AL, Y, cache):
    """
    :param AL: output of forward propagation
    :param Y: true labels
    :param cache: list of caches (l-1) output for relu and cache l output for sigmoid
    :return:
    grads: gradients for dA, dW and db
    """
    grads = {}
    L = len(cache)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

    current_cache = cache[-1]
    grads["dA" +
          str(L - 1)], grads["dW" +
                             str(L)], grads["db" + str(L)] = linear_backward(
                                 sigmoid_backward(dAL, current_cache[1]),
                                 current_cache[0])

    for layers in reversed(range(L - 1)):
        current_cache = cache[layers]
        dA_prev_temp, dW_temp, db_temp = linear_backward(
            relu_backward(grads["dA" + str(layers + 1)], current_cache[1]),
            current_cache[0])

        grads["dA" + str(layers)] = dA_prev_temp
        grads["dW" + str(layers + 1)] = dW_temp
        grads["db" + str(layers + 1)] = db_temp
        np.set_printoptions(suppress=True)
    return grads
Exemple #7
0
def linear_activation_backward(dA, cache, activation):
    """
	Implement the backward propagation for the LINEAR->ACTIVATION layer.
	
	Arguments:
		dA {np array} -- [post-activation gradient for current layer l]
		cache {tuple} -- [(linear_cache, activation_cache)]
		activation {string} -- the activation to be used in this layer
	
	Returns:
		[dA_prev] -- [gradient of the cost wrt the activation of the previous layer]
		[dW] -- []
		[db] -- []
	"""
    linear_cache, activation_cache = cache

    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #8
0
def linear_activation_backward(dA, cache, activation="relu"):
    """
    实现LINEAR-> ACTIVATION层的后向传播。

    参数:
         dA - 当前层l的激活后的梯度值
         cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
         activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "softmax":
        dZ = softmax_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #9
0
def L_model_backward(AL,Y,cache):
    """
    Implement backprop for (LINEAR->ReLU)*L-1 -> LINEAR->SIGMOID. 
    
    Arguments:
    AL-- probability vector output of forward propgation process (L_model_forward())
    Y-- labels vector (1 if cat, 0 if non-cat)
    cache -- 
    
    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ... 
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ...    
               
    """
    grads = {}
    
    L = len(cache) # number of layers
    m = AL.shape[1]  # number of training examples
    Y = Y.reshape(AL.shape)   
    
    # Initialise backpropagation
    dAL = np.divide(1-Y,1-AL) - np.divide(Y,AL)
    
    """
    Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches".
    Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    """
    current_cache = cache[-1]
    grads["dA"+str(L)],grads["dW"+str(L)],grads["db"+str(L)]  =linear_backward(
            sigmoid_backward(dAL,current_cache[1]),current_cache[0])
    
    
    for l in reversed(range(L-1)):
        current_cache = cache[l]
        dA_prev_temp,dW_temp,db_temp = linear_backward(sigmoid_backward(
                dAL,current_cache[1]),
        current_cache[0])
        
        grads["dA"+str(l+1)] = dA_prev_temp
        grads["dW"+str(l+1)] = dW_prev_temp
        grads["db"+str(l+1)] = db_prev_temp      
                
    
    return grads
Exemple #10
0
def linear_activation_backward(dA, cache, activation="relu"):
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
def linear_activation_backward(dA,cache,activation='relu'):
    linear_cache,activation_cache = cache
    if activation == 'relu':
        dZ = relu_backward(dA,activation_cache)
    elif activation == 'sigmoid':
        dZ = sigmoid_backward(dA,activation_cache)
    else:
        dZ = dA
    return linear_backward(dZ,linear_cache)
Exemple #12
0
def L_model_backward(AL, Y, caches):
  grads = {}
  L = len(caches)
  m = AL.shape[1]
  Y = Y.reshape(AL.shape)
  
  dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
  
  current_cache = caches[-1]
  grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_backward(sigmoid_backward(dAL, current_cache[1]), current_cache[0])
  
  for l in reversed(range(L-1)):
    current_cache = cache[l]
    dA_prev_temp, dW_temp, db_temp = linear_backward(sigmoid_backward(dAL, current_cache[1]), current_cache[0])
    grads["dA" + str(l + 1)] = dA_prev_temp
    grads["dW" + str(l + 1)] = dW_temp
    grads["db" + str(l + 1)] = db_temp
  
  return grads
Exemple #13
0
 def __linear_activation_backward(self, dA, cache, activation):
     linear_cache, activation_cache = cache
     if activation == "relu":
         dZ = relu_backward(dA, activation_cache)
     elif activation == "sigmoid":
         dZ = sigmoid_backward(dA, activation_cache)
     elif activation == "tanh":
         dZ = tanh_backward(dA, activation_cache)
     dA_prev, dW, db = self.__linear_backward(dZ, linear_cache)
     return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
    '''
    Implement the backward propagation for the Linear->Activation layer
    '''
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
Exemple #15
0
def linear_activation_backward(dA, cache, activation):
    linear_cache, active_cache = cache
    #计算dZ
    if activation == 'relu':
        dZ = utils.relu_backward(dA, cache)
    elif activation == 'sigmoid':
        dZ = utils.sigmoid_backward(dA, cache)
    #由dZ计算dW,db,dA_prev
    dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #16
0
 def linear_activation_backward(self, dA, cache, activation):
     # 先激活函数求导算出dZ
     linear_cache, activation_cache = cache  # 取出两部分缓存
     if activation == 'relu':
         dZ = relu_backward(dA, activation_cache)  # 求导需要dA和Z
     elif activation == 'sigmoid':
         dZ = sigmoid_backward(dA, activation_cache)
     # 随后对参数线性求导
     dA_prev, dW, db = self.linear_backward(
         dZ, linear_cache)  # dA_prev会用作上一层的激活函数求导
     return dA_prev, dW, db
def L_model_backward(AL, Y, caches):
    '''
    Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group

    Arguments:
    AL -- probability vector, output of the forward propagation (L_model_forward())
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
    caches -- list of caches containing:
                every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])

    Returns:
    grads -- A dictionary with the gradients
             grads["dA" + str(l)] = ...
             grads["dW" + str(l)] = ...
             grads["db" + str(l)] = ...
    '''
    grads = {}
    L = len(caches)
    m = AL.shape[1]
    y = Y.reshape(AL.shape)
    # Initializing the backpropagation
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    current_cache = caches[-1]
    grads["dA" +
          str(L)], grads["dW" +
                         str(L)], grads["db" + str(L)] = linear_backward(
                             sigmoid_backward(dAL, current_cache[1]),
                             current_cache[0])
    for l in reversed(range(L - 1)):
        current_cache = caches[l]
        dA_prev_temp, dw_temp, db_temp = linear_backward(
            sigmoid_backward(AL, current_cache[1]), current_cache[0])
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dw_temp
        grads["db" + str(l + 1)] = db_temp

    return grads
def linear_activation_backward(dA, cache, activation):

    linear_cache, activation_function = cache

    if activation == "relu":
        dZ = relu_backward(dA, cache[1])
        dA_prev, dW, db = linear_backward(dZ, cache[0])

    if activation == "sigmoid":
        dZ = sigmoid_backward(dA, cache[1])
        dA_prev, dW, db = linear_backward(dZ, cache[0])

    return dA_prev, dW, db
def linear_activation_backward(dA,cache,activation):
	"""
	Implement the backward propagation of neural unit
	"""

	if activation == "Relu":
		dz = relu_backward(dA,cache[1])

	elif activation == "sigmoid":
		dz = sigmoid_backward(dA,cache[1])

	dw,db,dA_pre = linear_backward(dz,cache[0])

	return dw,db,dA_pre
Exemple #20
0
def L_model_backward(AL, Y, caches, lamba):
    grads = {}
    L = len(caches)
    Y = Y.reshape(AL.shape)
    dAL = np.divide(1 - Y, 1 - AL) - np.divide(Y, AL)
    current_cache = caches[L - 1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads[
        "db" + str(L)] = linear_activation_backward(
            dAL, current_cache, lambda dA, Z: sigmoid_backward(dA, Z), lamba)

    for l in reversed(range(L - 1)):
        current_cache = caches[l]
        grads["dA" + str(l + 1)], grads["dW" + str(l + 1)], grads[
            "db" + str(l + 1)] = linear_activation_backward(
                grads["dA" + str(l + 2)], current_cache,
                lambda dA, Z: relu_backward(dA, Z), lamba)
    return grads
Exemple #21
0
def linear_activation_backward(dA, cache, activation):
    """
    :param dA:
    :param cache:
    :param activation:
    :return:dA_prev, dW, db
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "softmax":
        dZ = softmax_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
Exemple #22
0
def linear_activation_backward(dA, cache, activation):

    linear_cache, activation_cache = cache

    if activation == "relu":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = relu_backward(dA, activation_cache)
        ### END CODE HERE ###

    elif activation == "sigmoid":
        ### START CODE HERE ### (≈ 2 lines of code)
        dZ = sigmoid_backward(dA, activation_cache)
        ### END CODE HERE ###

    # Shorten the code
    dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #23
0
def linear_activation_backward(dA, cache, activation):
    '''
    实现linear -> Activation 层的后向传播
    :param dA: 当前层激活后的梯度值
    :param cache: 我们存储用于有效计算反向传播的值的元组,值为(linear_cache(# linear_cache = (A, W, b)),activation_cache(# Z))
    :param activation:要在此层中使用的激活函数的名称,字符串类型,如["relu"|"sigmoid"]
    :return:
        dA_prev:相对于激活(前一层L-1)的成本梯度值,与A_prev的维度相同
        dW:相对于W(当前层l)的成本梯度值,与W维度相同
        db:相对于b(当前层l)的成本梯度值,与b维度相同
    '''
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)  # activation_cache = Z
    if activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
Exemple #24
0
def linear_activation_backward(dA, cache, activation):
    """

    :param dA: 当前层l的激活后的梯度值
    :param cache:我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
    :param activation: 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    :return: dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #25
0
def linear_activation_backward(dA,cache,activation='relu'):
    '''
    实现linear->activation层的后向传播
    :param dA: 当前层l的激活后的梯度值
    :param cache: 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
    :param activation: 要在此层中使用的激活函数名,字符串类型,['sigmoid'|'relu]
    :return: 
    dA_prev-相当于激活(前一层)的 成本梯度值,与W的维度相同
    dW-相当于W(当前层l)的成本梯度值,与W的维度相同
    db-相当于b(当前层l)的成本梯度值,与b的维度相同
    '''
    linear_cache,activation_cache=cache
    if activation == 'relu':
        dZ = relu_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
    elif activation == 'sigmoid':
        dZ = sigmoid_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
    return dA_prev,dW,db
Exemple #26
0
def linear_activation_backward(dA, cache, activation="relu"):
    """
    实现linear->activation层的后向传播
    参数:
    dA -当前层的激活后的梯度值
    cache -前向过程中存储的用于计算反向传播的值的元组
    activation -激活函数名称 sigmoid或者relu
    返回:
    dA_prev -相对于激活(前一层l-1)成本梯度,与A_prev维度相同
    dW -相对于W(当前层l)的成本梯度,与W维度相同
    db -相对于b(当前层l)的成本梯度,与b维度相同
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    if activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #27
0
def linear_activation_backward(dA, cache, activation="relu"):
    """
    实现LINEAR->ACTIVATION层的后向传播
    
    参数:
        dA:当前层l的激活后的梯度值
        cache:我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
        activation: 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
        
    返回:
        dA_prev:相对于前一层的成本梯度值,与A_prev维度相同
        dW:相对于W的成本梯度值,与W的维度相同
        db:相对于b的成本梯度值,与b的维度相同
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)

    return dA_prev, dW, db
Exemple #28
0
def linear_activation_backward(dA, cache, activation):
    """
    Implement the backward propagation for the LINEAR->ACTIVATION layer.

    Arguments:
    dA -- post-activation gradient for current layer l
    cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
    activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"

    Returns:
    dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
    dW -- Gradient of the cost with respect to W (current layer l), same shape as W
    db -- Gradient of the cost with respect to b (current layer l), same shape as b
    """
    A_prev, W, b, Z = cache

    dL_dZ = None
    if activation == "relu":
        dL_dZ = utils.relu_backward(dA, Z)
    elif activation == "sigmoid":
        dL_dZ = utils.sigmoid_backward(dA, Z)

    m = A_prev.shape[1]

    dL_dW = 1 / m * np.dot(dL_dZ, A_prev.T)  # dL_dA * dA_dZ * dZ_dW = dL_dW
    dL_db = 1 / m * np.sum(dL_dZ, axis=1,
                           keepdims=True)  # dL_dA * dA_dZ * dZ_db = dL_db

    dA_prev = np.dot(
        W.T, dL_dZ)  # think of this step as -> dA[l-1] = W[l] * dL_dZ[l]

    assert (dA_prev.shape == A_prev.shape)
    assert (dL_dW.shape == W.shape)
    assert (dL_db.shape == b.shape)

    return dL_dW, dL_db, dA_prev
Exemple #29
0
    ### END CODE HERE ###
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    ### START CODE HERE ### (approx. 2 lines)
    current_cache = caches[-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_backward(sigmoid_backward(dAL,current_cache[1]),current_cache[0])
                                                                                           
                                                                                     )
    ### END CODE HERE ###
    
    for l in reversed(range(L-1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
        ### START CODE HERE ### (approx. 5 lines)
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_backward(sigmoid_backward(dAL, current_cache[1]), current_cache[0])
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        ### END CODE HERE ###

    return grads
    X_assess, Y_assess, AL, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate):
    """