def main():
    corpus = SquadCorpus()
    prepro = SquadTfIdfRanker(NltkPlusStopWords(True), OPTS.num_per_orig, True)
    orig_data = corpus.get_train(
    ) if OPTS.split == 'train' else corpus.get_dev()
    orig_lens = [
        len(p.text[0]) for doc in orig_data for p in doc.paragraphs
        for q in p.questions
    ]
    new_data = preprocess_par(orig_data,
                              corpus.evidence,
                              prepro,
                              n_processes=1)
    new_lens = [len(p.text) for q in new_data for p in q.paragraphs]
    print('%d original, mean %.2f words' %
          (len(orig_lens), np.mean(orig_lens)))
    print('%d new, mean %.2f words' % (len(new_lens), np.mean(new_lens)))
    if OPTS.out_file:
        write_output(OPTS.split, new_data, OPTS.out_file)
def main():
  corpus = SquadCorpus()
  if OPTS.normalize_before_ranking:
      normalizer = WordNormalizer()
  else:
      normalizer = None
  if OPTS.use_vec_dist:
    word_vecs = corpus.get_pruned_word_vecs('glove.840B.300d')
    prepro = SquadVectorTfIdfRanker(NltkPlusStopWords(True), OPTS.num_per_orig, True, word_vecs, word_normalizer=normalizer)
  else:
    prepro = SquadTfIdfRanker(NltkPlusStopWords(True), OPTS.num_per_orig, True, word_normalizer=normalizer)
  orig_data = corpus.get_train() if OPTS.split == 'train' else corpus.get_dev()
  orig_lens = [len(p.text[0]) for doc in orig_data for p in doc.paragraphs
               for q in p.questions] 
  new_data = preprocess_par(orig_data, corpus.evidence, prepro, n_processes=1)
  new_lens = [len(p.text) for q in new_data for p in q.paragraphs]
  print('%d original, mean %.2f words' % (len(orig_lens), np.mean(orig_lens)))
  print('%d new, mean %.2f words'% (len(new_lens), np.mean(new_lens)))
  if OPTS.out_file:
    write_output(OPTS.split, new_data, OPTS.out_file)
def main():
    data = TriviaQaOpenDataset()
    # data = TriviaQaWebDataset()
    print("Loading...")
    all_questions = data.get_dev()

    questions = [
        q for q in all_questions if any(
            len(x.answer_spans) > 0 for x in q.all_docs)
    ]
    print(
        "%d/%d (%.4f) have an answer" % (len(questions), len(all_questions),
                                         len(questions) / len(all_questions)))

    np.random.shuffle(questions)

    pre = ExtractMultiParagraphsPerQuestion(MergeParagraphs(400),
                                            TopTfIdf(NltkPlusStopWords(), 20),
                                            require_an_answer=False)
    print("Done")

    out = preprocess_par(questions[:2000], data.evidence, pre, 2, 1000)

    n_counts = np.zeros(20)
    n_any = np.zeros(20)
    n_any_all = np.zeros(20)

    for q in out.data:
        for i, p in enumerate(q.paragraphs):
            n_counts[i] += 1
            n_any[i] += len(p.answer_spans) > 0

        for i, p in enumerate(q.paragraphs):
            if len(p.answer_spans) > 0:
                n_any_all[i:] += 1
                break

    print(n_any_all / out.true_len)
    print(n_any / n_counts)
    print(n_counts)
def get_questions(per_document, dataset, splitter, para_filter, preprocessor,
                  n_processes, batch_size):
    test_questions = dataset.get_dev()
    corpus = dataset.evidence
    print("Building question/paragraph pairs...")

    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter,
                                      para_filter,
                                      preprocessor,
                                      require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter,
                                                 para_filter,
                                                 preprocessor,
                                                 require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep, n_processes,
                                  1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(
                DocumentParagraphQuestion(q.question_id, p.doc_id,
                                          (p.start, p.end), q.question, p.text,
                                          ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)
    test_questions = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(batch_size, True))
    n_questions = len(questions)
    return test_questions, n_questions
Exemple #5
0
def main():
    parser = argparse.ArgumentParser(description='Evaluate a model on TriviaQA data')
    parser.add_argument('model', help='model directory')
    parser.add_argument('-p', '--paragraph_output', type=str,
                        help="Save fine grained results for each paragraph in csv format")
    parser.add_argument('-o', '--official_output', type=str, help="Build an offical output file with the model's"
                                                                  " most confident span for each (question, doc) pair")
    parser.add_argument('--no_ema', action="store_true", help="Don't use EMA weights even if they exist")
    parser.add_argument('--n_processes', type=int, default=None,
                        help="Number of processes to do the preprocessing (selecting paragraphs+loading context) with")
    parser.add_argument('-i', '--step', type=int, default=None, help="checkpoint to load, default to latest")
    parser.add_argument('-n', '--n_sample', type=int, default=None, help="Number of questions to evaluate on")
    parser.add_argument('-a', '--async', type=int, default=10)
    parser.add_argument('-t', '--tokens', type=int, default=400,
                        help="Max tokens per a paragraph")
    parser.add_argument('-g', '--n_paragraphs', type=int, default=15,
                        help="Number of paragraphs to run the model on")
    parser.add_argument('-f', '--filter', type=str, default=None, choices=["tfidf", "truncate", "linear"],
                        help="How to select paragraphs")
    parser.add_argument('-b', '--batch_size', type=int, default=200,
                        help="Batch size, larger sizes might be faster but wll take more memory")
    parser.add_argument('--max_answer_len', type=int, default=8,
                        help="Max answer span to select")
    parser.add_argument('-c', '--corpus',
                        choices=["web-dev", "web-test", "web-verified-dev", "web-train",
                                 "open-dev", "open-train"],
                        default="web-verified-dev")
    args = parser.parse_args()

    model_dir = ModelDir(args.model)
    model = model_dir.get_model()

    if args.corpus.startswith('web'):
        dataset = TriviaQaWebDataset()
        corpus = dataset.evidence
        if args.corpus == "web-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "web-test":
            test_questions = dataset.get_test()
        elif args.corpus == "web-verified-dev":
            test_questions = dataset.get_verified()
        elif args.corpus == "web-train":
            test_questions = dataset.get_train()
        else:
            raise RuntimeError()
    else:
        dataset = TriviaQaOpenDataset()
        corpus = dataset.evidence
        if args.corpus == "open-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "open-train":
            test_questions = dataset.get_train()
        else:
            raise RuntimeError()

    splitter = MergeParagraphs(args.tokens)

    per_document = not args.corpus.startswith("open")

    filter_name = args.filter
    if filter_name is None:
        if args.corpus.startswith("open"):
            filter_name = "linear"
        else:
            filter_name = "tfidf"

    print("Selecting %d paragraphs using %s method per %s" % (args.n_paragraphs, filter_name,
                                                              ("question-document pair" if per_document else "question")))

    if filter_name == "tfidf":
        para_filter = TopTfIdf(NltkPlusStopWords(punctuation=True), args.n_paragraphs)
    elif filter_name == "truncate":
        para_filter = FirstN(args.n_paragraphs)
    elif filter_name == "linear":
        para_filter = ShallowOpenWebRanker(args.n_paragraphs)
    else:
        raise ValueError()

    n_questions = args.n_sample
    if n_questions is not None:
        test_questions.sort(key=lambda x:x.question_id)
        np.random.RandomState(0).shuffle(test_questions)
        test_questions = test_questions[:n_questions]

    print("Building question/paragraph pairs...")
    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter, para_filter, model.preprocessor, require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter, para_filter, model.preprocessor, require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep, args.n_processes, 1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(DocumentParagraphQuestion(q.question_id, p.doc_id,
                                                 (p.start, p.end), q.question, p.text,
                                                  ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data, key=lambda x: (x.n_context_words, len(x.question)), reverse=True)

    print("Done, starting eval")

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    test_questions = ParagraphAndQuestionDataset(questions, FixedOrderBatcher(args.batch_size, True))

    evaluation = trainer.test(model,
                             [RecordParagraphSpanPrediction(args.max_answer_len, True)],
                              {args.corpus:test_questions}, ResourceLoader(), checkpoint, not args.no_ema, args.async)[args.corpus]

    if not all(len(x) == len(data) for x in evaluation.per_sample.values()):
        raise RuntimeError()

    df = pd.DataFrame(evaluation.per_sample)

    if args.official_output is not None:
        print("Saving question result")

        # I didn't store the unormalized filenames exactly, so unfortunately we have to reload
        # the source data to get exact filename to output an official test script
        fns = {}
        print("Loading proper filenames")
        if args.corpus == 'web-test':
            source = join(TRIVIA_QA, "qa", "web-test-without-answers.json")
        elif args.corpus == "web-dev":
            source = join(TRIVIA_QA, "qa", "web-dev.json")
        else:
            raise NotImplementedError()

        with open(join(source)) as f:
            data = json.load(f)["Data"]
        for point in data:
            for doc in point["EntityPages"]:
                filename = doc["Filename"]
                fn = join("wikipedia", filename[:filename.rfind(".")])
                fn = normalize_wiki_filename(fn)
                fns[(point["QuestionId"], fn)] = filename

        answers = {}
        scores = {}
        for q_id, doc_id, start, end, txt, score in df[["question_id", "doc_id", "para_start", "para_end",
                                                        "text_answer", "predicted_score"]].itertuples(index=False):
            filename = dataset.evidence.file_id_map[doc_id]
            if filename.startswith("web"):
                true_name = filename[4:] + ".txt"
            else:
                true_name = fns[(q_id, filename)]

            key = q_id + "--" + true_name
            prev_score = scores.get(key)
            if prev_score is None or prev_score < score:
                scores[key] = score
                answers[key] = txt

        with open(args.official_output, "w") as f:
            json.dump(answers, f)

    if per_document:
        group_by = ["question_id", "doc_id"]
    else:
        group_by = ["question_id"]

    # Print a table of scores as more paragraphs are used
    df.sort_values(group_by + ["rank"], inplace=True)
    f1 = compute_model_scores(df, "predicted_score", "text_f1", group_by)
    em = compute_model_scores(df, "predicted_score", "text_em", group_by)
    table = [["N Paragraphs", "EM", "F1"]]
    table += list([str(i+1), "%.4f" % e, "%.4f" % f] for i, (e, f) in enumerate(zip(em, f1)))
    print_table(table)

    output_file = args.paragraph_output
    if output_file is not None:
        print("Saving paragraph result")
        if output_file.endswith("json"):
            with open(output_file, "w") as f:
                json.dump(evaluation.per_sample, f)
        elif output_file.endswith("pkl"):
            with open(output_file, "wb") as f:
                pickle.dump(evaluation.per_sample, f)
        elif output_file.endswith("csv"):

            df.to_csv(output_file, index=False)
        else:
            raise ValueError("Unrecognized file format")
Exemple #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--n_processes',
        type=int,
        default=1,
        help=
        "Number of processes to do the preprocessing (selecting paragraphs+loading context) with"
    )
    parser.add_argument('-a', '--async', type=int, default=10)
    parser.add_argument('-t',
                        '--tokens',
                        type=int,
                        default=400,
                        help="Max tokens per a paragraph")
    parser.add_argument('-n',
                        '--n_sample',
                        type=int,
                        default=None,
                        help="Number of questions to evaluate on")
    parser.add_argument('-g',
                        '--n_paragraphs',
                        type=int,
                        default=15,
                        help="Number of paragraphs to run the model on")
    parser.add_argument('-f',
                        '--filter',
                        type=str,
                        default=None,
                        choices=["tfidf", "truncate", "linear"],
                        help="How to select paragraphs")
    parser.add_argument(
        '-c',
        '--corpus',
        choices=[
            "en_dev", "en_test", "fr_dev", "fr_test", "de_dev", "de_test",
            "ru_dev", "ru_test", "pt_dev", "pt_test", "zh_dev", "zh_test",
            "pl_dev", "pl_test", "uk_dev", "uk_test", "ta_dev", "ta_test",
            "fr_trans_en_dev", "fr_trans_en_test", "de_trans_en_dev",
            "de_trans_en_test", "ru_trans_en_dev", "ru_trans_en_test",
            "pt_trans_en_dev", "pt_trans_en_test", "zh_trans_en_dev",
            "zh_trans_en_test", "pl_trans_en_dev", "pl_trans_en_test",
            "uk_trans_en_dev", "uk_trans_en_test", "ta_trans_en_dev",
            "ta_trans_en_test"
        ],
        required=True)
    args = parser.parse_args()

    corpus_name = args.corpus[:args.corpus.rfind("_")]
    eval_set = args.corpus[args.corpus.rfind("_") + 1:]
    dataset = XQADataset(corpus_name)
    if eval_set == "dev":
        test_questions = dataset.get_dev()
    elif eval_set == "test":
        test_questions = dataset.get_test()
    else:
        raise AssertionError()

    corpus = dataset.evidence
    splitter = MergeParagraphs(args.tokens)

    per_document = args.corpus.startswith(
        "web")  # wiki and web are both multi-document

    filter_name = args.filter
    if filter_name is None:
        # Pick default depending on the kind of data we are using
        if per_document:
            filter_name = "tfidf"
        else:
            filter_name = "linear"

    print("Selecting %d paragraphs using method \"%s\" per %s" %
          (args.n_paragraphs, filter_name,
           ("question-document pair" if per_document else "question")))

    if filter_name == "tfidf":
        para_filter = TopTfIdf(NltkPlusStopWords(punctuation=True),
                               args.n_paragraphs)
    elif filter_name == "truncate":
        para_filter = FirstN(args.n_paragraphs)
    elif filter_name == "linear":
        para_filter = ShallowOpenWebRanker(args.n_paragraphs)
    else:
        raise ValueError()

    n_questions = args.n_sample
    if n_questions is not None:
        test_questions.sort(key=lambda x: x.question_id)
        np.random.RandomState(0).shuffle(test_questions)
        test_questions = test_questions[:n_questions]

    preprocessor = WithIndicators()
    print("Building question/paragraph pairs...")
    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter,
                                      para_filter,
                                      preprocessor,
                                      require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter,
                                                 para_filter,
                                                 preprocessor,
                                                 require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep,
                                  args.n_processes, 1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(
                DocumentParagraphQuestion(q.question_id, p.doc_id,
                                          (p.start, p.end), q.question, p.text,
                                          ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)

    # dump eval data for bert
    import pickle
    pickle.dump(questions,
                open("%s_%d.pkl" % (args.corpus, args.n_paragraphs), "wb"))
def main():
    parser = argparse.ArgumentParser(
        description='Evaluate a model on TriviaQA data')
    parser.add_argument('model', help='model directory')
    parser.add_argument(
        '-p',
        '--paragraph_output',
        type=str,
        help="Save fine grained results for each paragraph in csv format")
    parser.add_argument('-o',
                        '--official_output',
                        type=str,
                        help="Build an offical output file with the model's"
                        " most confident span for each (question, doc) pair")
    parser.add_argument('--no_ema',
                        action="store_true",
                        help="Don't use EMA weights even if they exist")
    parser.add_argument(
        '--n_processes',
        type=int,
        default=None,
        help=
        "Number of processes to do the preprocessing (selecting paragraphs+loading context) with"
    )
    parser.add_argument('-i',
                        '--step',
                        type=int,
                        default=None,
                        help="checkpoint to load, default to latest")
    parser.add_argument('-n',
                        '--n_sample',
                        type=int,
                        default=None,
                        help="Number of questions to evaluate on")
    parser.add_argument('-a', '--async', type=int, default=10)
    parser.add_argument('-t',
                        '--tokens',
                        type=int,
                        default=400,
                        help="Max tokens per a paragraph")
    parser.add_argument('-g',
                        '--n_paragraphs',
                        type=int,
                        default=15,
                        help="Number of paragraphs to run the model on")
    parser.add_argument('-f',
                        '--filter',
                        type=str,
                        default=None,
                        choices=["tfidf", "truncate", "linear"],
                        help="How to select paragraphs")
    parser.add_argument(
        '-b',
        '--batch_size',
        type=int,
        default=200,
        help="Batch size, larger sizes might be faster but wll take more memory"
    )
    parser.add_argument('--max_answer_len',
                        type=int,
                        default=8,
                        help="Max answer span to select")
    parser.add_argument('-c',
                        '--corpus',
                        choices=[
                            "web-dev", "web-test", "web-verified-dev",
                            "web-train", "open-dev", "open-train", "wiki-dev",
                            "wiki-test"
                        ],
                        default="web-verified-dev")
    parser.add_argument("-s",
                        "--source_dir",
                        type=str,
                        default=None,
                        help="where to take input files")
    parser.add_argument("--n_span_per_q",
                        type=int,
                        default=1,
                        help="where to take input files")
    args = parser.parse_args()

    dataset_name = args.source_dir.split('/')[-1]
    model_name = args.model.split('/')[-1]
    ElasticLogger().write_log('INFO',
                              'Start Evaluation',
                              context_dict={
                                  'model': model_name,
                                  'dataset': dataset_name
                              })

    model_dir = ModelDir(args.model)
    model = model_dir.get_model()

    if args.corpus.startswith('web'):
        dataset = TriviaQaWebDataset()
        if args.corpus == "web-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "web-test":
            test_questions = dataset.get_test()
        elif args.corpus == "web-verified-dev":
            test_questions = dataset.get_verified()
        elif args.corpus == "web-train":
            test_questions = dataset.get_train()
        else:
            raise AssertionError()
    elif args.corpus.startswith("wiki"):
        dataset = TriviaQaWikiDataset()
        if args.corpus == "wiki-dev":
            test_questions = dataset.get_dev()
        elif args.corpus == "wiki-test":
            test_questions = dataset.get_test()
        else:
            raise AssertionError()
    else:
        dataset = TriviaQaOpenDataset(args.source_dir)
        if args.corpus == "open-dev":
            # just loading the pkl that was saved in build_span_corpus
            test_questions = dataset.get_dev()
        elif args.corpus == "open-train":
            test_questions = dataset.get_train()
        else:
            raise AssertionError()

    ### ALON debuging
    #test_questions = test_questions[0:5]

    corpus = dataset.evidence
    splitter = MergeParagraphs(args.tokens)

    per_document = args.corpus.startswith(
        "web")  # wiki and web are both multi-document
    #per_document = True

    filter_name = args.filter
    if filter_name is None:
        # Pick default depending on the kind of data we are using
        if per_document:
            filter_name = "tfidf"
        else:
            filter_name = "linear"

    print("Selecting %d paragraphs using method \"%s\" per %s" %
          (args.n_paragraphs, filter_name,
           ("question-document pair" if per_document else "question")))

    if filter_name == "tfidf":
        para_filter = TopTfIdf(NltkPlusStopWords(punctuation=True),
                               args.n_paragraphs)
    elif filter_name == "truncate":
        para_filter = FirstN(args.n_paragraphs)
    elif filter_name == "linear":
        para_filter = ShallowOpenWebRanker(args.n_paragraphs)
    else:
        raise ValueError()

    n_questions = args.n_sample
    docqa.config.SPANS_PER_QUESTION = args.n_span_per_q
    #n_questions = 1
    if n_questions is not None:
        test_questions.sort(key=lambda x: x.question_id)
        np.random.RandomState(0).shuffle(test_questions)
        test_questions = test_questions[:n_questions]

    print("Building question/paragraph pairs...")
    # Loads the relevant questions/documents, selects the right paragraphs, and runs the model's preprocessor
    if per_document:
        prep = ExtractMultiParagraphs(splitter,
                                      para_filter,
                                      model.preprocessor,
                                      require_an_answer=False)
    else:
        prep = ExtractMultiParagraphsPerQuestion(splitter,
                                                 para_filter,
                                                 model.preprocessor,
                                                 require_an_answer=False)
    prepped_data = preprocess_par(test_questions, corpus, prep,
                                  args.n_processes, 1000)

    data = []
    for q in prepped_data.data:
        for i, p in enumerate(q.paragraphs):
            if q.answer_text is None:
                ans = None
            else:
                ans = TokenSpans(q.answer_text, p.answer_spans)
            data.append(
                DocumentParagraphQuestion(q.question_id, p.doc_id,
                                          (p.start, p.end), q.question, p.text,
                                          ans, i))

    # Reverse so our first batch will be the largest (so OOMs happen early)
    questions = sorted(data,
                       key=lambda x: (x.n_context_words, len(x.question)),
                       reverse=True)

    print("Done, starting eval")

    if args.step is not None:
        if args.step == "latest":
            checkpoint = model_dir.get_latest_checkpoint()
        else:
            checkpoint = model_dir.get_checkpoint(int(args.step))
    else:
        checkpoint = model_dir.get_best_weights()
        if checkpoint is not None:
            print("Using best weights")
        else:
            print("Using latest checkpoint")
            checkpoint = model_dir.get_latest_checkpoint()

    test_questions = ParagraphAndQuestionDataset(
        questions, FixedOrderBatcher(args.batch_size, True))

    evaluation = trainer.test(
        model, [RecordParagraphSpanPrediction(args.max_answer_len, True)],
        {args.corpus: test_questions}, ResourceLoader(), checkpoint,
        not args.no_ema, args. async)[args.corpus]

    if not all(len(x) == len(data) for x in evaluation.per_sample.values()):
        raise RuntimeError()

    df = pd.DataFrame(evaluation.per_sample)

    if args.official_output is not None:
        print("Saving question result")

        fns = {}
        if per_document:
            # I didn't store the unormalized filenames exactly, so unfortunately we have to reload
            # the source data to get exact filename to output an official test script
            print("Loading proper filenames")
            if args.corpus == 'web-test':
                source = join(TRIVIA_QA, "qa", "web-test-without-answers.json")
            elif args.corpus == "web-dev":
                source = join(TRIVIA_QA, "qa", "web-dev.json")
            else:
                raise AssertionError()

            with open(join(source)) as f:
                data = json.load(f)["Data"]
            for point in data:
                for doc in point["EntityPages"]:
                    filename = doc["Filename"]
                    fn = join("wikipedia", filename[:filename.rfind(".")])
                    fn = normalize_wiki_filename(fn)
                    fns[(point["QuestionId"], fn)] = filename

        answers = {}
        scores = {}
        for q_id, doc_id, start, end, txt, score in df[[
                "question_id", "doc_id", "para_start", "para_end",
                "text_answer", "predicted_score"
        ]].itertuples(index=False):
            filename = dataset.evidence.file_id_map[doc_id]
            if per_document:
                if filename.startswith("web"):
                    true_name = filename[4:] + ".txt"
                else:
                    true_name = fns[(q_id, filename)]
                # Alon Patch for triviaqa test results
                true_name = true_name.replace('TriviaQA_Org/', '')
                key = q_id + "--" + true_name
            else:
                key = q_id

            prev_score = scores.get(key)
            if prev_score is None or prev_score < score:
                scores[key] = score
                answers[key] = txt

        with open(args.official_output, "w") as f:
            json.dump(answers, f)

    output_file = args.paragraph_output
    if output_file is not None:
        print("Saving paragraph result")
        df.to_csv(output_file, index=False)

    print("Computing scores")

    if per_document:
        group_by = ["question_id", "doc_id"]
    else:
        group_by = ["question_id"]

    # Print a table of scores as more paragraphs are used
    df.sort_values(group_by + ["rank"], inplace=True)
    df_scores = df.copy(deep=True)
    df_scores['predicted_score'] = df_scores['predicted_score'].apply(
        lambda x: pd.Series(x).max())

    em = compute_ranked_scores(df_scores, "predicted_score", "text_em",
                               group_by)
    f1 = compute_ranked_scores(df_scores, "predicted_score", "text_f1",
                               group_by)
    table = [["N Paragraphs", "EM", "F1"]]
    table += list([str(i + 1), "%.4f" % e, "%.4f" % f]
                  for i, (e, f) in enumerate(zip(em, f1)))

    table_df = pd.DataFrame(table[1:], columns=table[0]).drop(['N Paragraphs'],
                                                              axis=1)
    ElasticLogger().write_log('INFO', 'Results', context_dict={'model': model_name, 'dataset': dataset_name, \
                                                            'max_EM':table_df.max().ix['EM'], \
                                                            'max_F1':table_df.max().ix['F1'], \
                                                            'result_table': str(table_df)})

    df_flat = []
    for id, question in df.iterrows():
        for text_answer, predicted_span, predicted_score in zip(
                question['text_answer'], question['predicted_span'],
                question['predicted_score']):
            new_question = dict(question.copy())
            new_question.update({
                'text_answer': text_answer,
                'predicted_span': predicted_span,
                'predicted_score': predicted_score
            })
            df_flat.append(new_question)

    results_df = pd.DataFrame(df_flat)
    #Alon: outputing the estimates for all the
    #results_df = results_df.groupby(['question_id', 'text_answer']).apply(lambda df: df.ix[df['predicted_score'].argmax()]).reset_index(drop=True)
    results_df.sort_values(by=['question_id', 'predicted_score'],
                           ascending=False).set_index([
                               'question_id', 'text_answer'
                           ])[['question', 'predicted_score',
                               'text_em']].to_csv('results.csv')

    print_table(table)